Abstract

The complex composition, size, and distribution of microstructures of titanium (Ti) alloy affect the mechanical properties of titanium alloy and its application in aerospace, ocean technology, and bioengineering. In this paper, the microstructural components and mechanical behavior of Ti80 are first investigated experimentally. According to the experimental observations of the dual-phased microstructures, a mechanism and microstructure-based constitutive model of Ti80 is established to study the quantitative relationship between mechanical behavior and equiaxed αp + lamellar αs + β microstructures of titanium alloys. And the influence of dislocation evolution and accumulation on the strengthening and work-hardening of materials is also explored in detail, especially the contribution of dislocation pile-up zone at the phase boundary between α phase and β phase on the strengthening of materials. Numerical results show that the proposed model can describe the constitutive behavior of Ti80 very well, including yield stress and strain hardening. And various strengthening mechanisms originated from the grain boundaries, phase boundaries of β transformation structure and β precipitation are analyzed. The proposed model is further applied to predict the constitutive behaviors of the titanium alloy with different sizes and various volume fractions of microstructure.

References

1.
Zhang
,
L.
, and
Chen
,
L.
,
2019
, “
A Review on Biomedical Titanium Alloys: Recent Progress and Prospect
,”
Adv. Eng. Mater.
,
21
(
4
), p.
1801215
.
2.
Zhang
,
L.
,
Chen
,
L.
, and
Wang
,
L.
,
2020
, “
Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests
,”
Adv. Eng. Mater.
,
22
(
5
), p.
1901258
.
3.
Mohseni
,
E.
,
Zalnezhad
,
E.
, and
Bushroa
,
A. R.
,
2014
, “
Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti-6Al-4 V Implant: A Review Paper
,”
Int. J. Adhes. Adhes.
,
48
, pp.
238
257
.
4.
Gorynin
,
I. V.
,
1999
, “
Titanium Alloys for Marine Application
,”
Mater. Sci. Eng. A
,
263
(
2
), pp.
112
116
.
5.
Oberson
,
P. G.
, and
Ankem
,
S.
,
2009
, “
The Effect of Time-Dependent Twinning on Low Temperature (<0.25*Tm) Creep of an Alpha-Titanium Alloy
,”
Int. J. Plast.
,
25
(
5
), pp.
881
900
.
6.
Peng
,
J.
,
Zhou
,
C.
,
Dai
,
Q.
, and
He
,
X. H.
,
2014
, “
The Temperature and Stress Dependent Primary Creep of CP-Ti at Low and Intermediate Temperature
,”
Mater. Sci. Eng. A
,
611
, pp.
123
135
.
7.
Cai
,
C.
,
Gao
,
X.
,
Teng
,
Q.
,
Kiran
,
R.
,
Liu
,
J.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2021
, “
Hot Isostatic Pressing of a Near α-Ti Alloy: Temperature Optimization, Microstructural Evolution and Mechanical Performance Evaluation
,”
Mater. Sci. Eng. A
,
802
, p.
140426
.
8.
Li
,
Y.
,
Yang
,
C.
,
Zhao
,
H.
,
Qu
,
S.
,
Li
,
X.
, and
Li
,
Y.
,
2014
, “
New Developments of Ti-Based Alloys for Biomedical Applications
,”
Materials
,
7
(
3
), pp.
1709
1800
.
9.
Luo
,
X.
,
Liu
,
L. H.
,
Yang
,
C.
,
Lu
,
H. Z.
,
Ma
,
H. W.
,
Wang
,
Z.
,
Li
,
D. D.
,
Zhang
,
L. C.
, and
Li
,
Y. Y.
,
2021
, “
Overcoming the Strength–Ductility Trade-Off by Tailoring Grain-Boundary Metastable Si-Containing Phase in β-Type Titanium Alloy
,”
J. Mater. Sci. Technol.
,
68
, pp.
112
123
.
10.
Yu
,
Y.
,
Hui
,
S.
,
Ye
,
W.
, and
Xiong
,
B.
,
2009
, “
Mechanical Properties and Microstructure of an α+β Titanium Alloy With High Strength and Fracture Toughness
,”
Rare Met.
,
28
(
4
), pp.
346
349
.
11.
Wang
,
Y.
,
Hao
,
M.
,
Li
,
D.
,
Li
,
P.
,
Liang
,
Q.
,
Wang
,
D.
,
Zheng
,
Y.
,
Sun
,
Q.
, and
Wang
,
Y.
,
2022
, “
Enhanced Mechanical Properties of Ti-5Al-5Mo-5V-3Cr-1Zr by Bimodal Lamellar Precipitate Microstructures Via Two-Step Aging
,”
Mater. Sci. Eng. A
,
829
, p.
142117
.
12.
Suri
,
S.
,
Viswanathan
,
G. B.
,
Neeraj
,
T.
,
Hou
,
D.-H.
, and
Mills
,
M. J.
,
1999
, “
Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of an α/β Titanium Alloy
,”
Acta Mater.
,
47
(
3
), pp.
1019
1034
.
13.
Zheng
,
Y.
,
Williams
,
R. E. A.
,
Sosa
,
J. M.
,
Wang
,
Y.
,
Banerjee
,
R.
, and
Fraser
,
H. L.
,
2016
, “
The Role of the ω Phase on the Non-Classical Precipitation of the α Phase in Metastable β-Titanium Alloys
,”
Scr. Mater.
,
111
, pp.
81
84
.
14.
Semiatin
,
S. L.
, and
Bieler
,
T. R.
,
2001
, “
The Effect of Alpha Platelet Thickness on Plastic Flow During Hot Working of TI–6Al–4 V With a Transformed Microstructure
,”
Acta Mater.
,
49
(
17
), pp.
3565
3573
.
15.
Maruyama
,
K.
,
Yamada
,
N.
, and
Sato
,
H.
,
2001
, “
Effects of Lamellar Spacing on Mechanical Properties of Fully Lamellar Ti–39.4mol%Al Alloy
,”
Mater. Sci. Eng. A
,
319–321
, pp.
360
363
.
16.
Kang
,
L. M.
,
Cai
,
Y. J.
,
Luo
,
X. C.
,
Li
,
Z. J.
,
Liu
,
X. B.
,
Wang
,
Z.
,
Li
,
Y. Y.
, and
Yang
,
C.
,
2021
, “
Bimorphic Microstructure in Ti-6Al-4V Alloy Manipulated by Spark Plasma Sintering and In-Situ Press Forging
,”
Scr. Mater.
,
193
, pp.
43
48
.
17.
Clément
,
N.
,
Lenain
,
A.
, and
Jacques
,
P. J.
,
2007
, “
Mechanical Property Optimization Via Microstructural Control of New Metastable Beta Titanium Alloys
,”
JOM
,
59
(
1
), pp.
50
53
.
18.
Bu
,
G. L.
,
Lang
,
L. H.
,
Wang
,
G.
,
Song
,
Y.
, and
Xu
,
Q. Y.
,
2014
, “
Forming and Simulation of Titanium Alloy Ti-6Al-4 V by Hot Isostatic Pressing
,”
Adv. Mater. Res.
,
848
, pp.
50
54
.
19.
Liu
,
Z.
,
Ma
,
L.
,
Meng
,
Z.
,
Liu
,
P.
, and
Du
,
Y.
,
2021
, “
Effect of Yield Criterion and Variable Elastic Modulus on Springback Prediction of Ti-6Al-4 V Sheet V-Shaped Bending
,”
Int. J. Adv. Manuf. Technol.
,
116
(
5
), pp.
1925
1936
.
20.
Sun
,
Y.
,
Zeng
,
W. D.
,
Zhang
,
X. M.
,
Zhao
,
X. M.
,
Ma
,
X.
, and
Han
,
Y. F.
,
2011
, “
Prediction of Tensile Property of Hydrogenated Ti600 Titanium Alloy Using Artificial Neural Network
,”
J. Mater. Eng. Perform.
,
20
(
3
), pp.
335
340
.
21.
Li
,
J.
, and
Soh
,
A. K.
,
2012
, “
Modeling of the Plastic Deformation of Nanostructured Materials With Grain Size Gradient
,”
Int. J. Plast.
,
39
, pp.
88
102
.
22.
Zhu
,
L.
,
Ruan
,
H.
,
Chen
,
A.
,
Guo
,
X.
, and
Lu
,
J.
,
2017
, “
Microstructures-Based Constitutive Analysis for Mechanical Properties of Gradient-Nanostructured 304 Stainless Steels
,”
Acta Mater.
,
128
, pp.
375
390
.
23.
Weng
,
G. J.
,
1990
, “
The Overall Elastoplastic Stress-Strain Relations of Dual-Phase Metals
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
419
441
.
24.
Jiang
,
B.
, and
Weng
,
G. J.
,
2004
, “
A Generalized Self-Consistent Polycrystal Model for the Yield Strength of Nanocrystalline Materials
,”
J. Mech. Phys. Solids
,
52
(
5
), pp.
1125
1149
.
25.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4
), pp.
753
782
.
26.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
27.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.: A
,
21
(
170
), pp.
399
424
.
28.
Bailey
,
J. E.
, and
Hirsch
,
P. B.
,
1960
, “
The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver
,”
Philos. Mag.: A
,
5
(
53
), pp.
485
497
.
29.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.
30.
Bergström
,
Y.
,
1972
, “
A Dislocation Model for the Strain-Ageing Behaviour of Steel
,”
Mater. Sci. Eng.
,
9
, pp.
101
110
.
31.
Roberts
,
W.
, and
Bergström
,
Y.
,
1973
, “
The Stress-Strain Behaviour of Single Crystals and Polycrystals of Face-Centered Cubic Metals-A New Dislocation Treatment
,”
Acta Metall.
,
21
(
4
), pp.
457
469
.
32.
Sandström
,
R.
, and
Hallgren
,
J.
,
2012
, “
The Role of Creep in Stress Strain Curves for Copper
,”
J. Nucl. Mater.
,
422
(
1
), pp.
51
57
.
33.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
.
34.
Zhu
,
L.
,
Ruan
,
H.
,
Li
,
X.
,
Dao
,
M.
,
Gao
,
H.
, and
Lu
,
J.
,
2011
, “
Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals
,”
Acta Mater.
,
59
(
14
), pp.
5544
5557
.
35.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
(
1
), pp.
57
70
.
36.
Kocks
,
U. F.
, and
Mecking
,
H.
,
2003
, “
Physics and Phenomenology of Strain Hardening: the FCC Case
,”
Prog. Mater. Sci.
,
48
(
3
), pp.
171
273
.
37.
Kumar
,
S. S. S.
,
Pavithra
,
B.
,
Singh
,
V.
,
Ghosal
,
P.
, and
Raghu
,
T.
,
2019
, “
Tensile Anisotropy Associated Microstructural and Microtextural Evolution in a Metastable Beta Titanium Alloy
,”
Mater. Sci. Eng. A
,
747
, pp.
1
16
.
38.
Sandström
,
R.
,
2012
, “
Basic Model for Primary and Secondary Creep in Copper
,”
Acta Mater.
,
60
(
1
), pp.
314
322
.
39.
Majumdar
,
P.
,
Singh
,
S. B.
, and
Chakraborty
,
M.
,
2008
, “
Elastic Modulus of Biomedical Titanium Alloys by Nano-Indentation and Ultrasonic Techniques-A Comparative Study
,”
Mater. Sci. Eng. A
,
489
(
1
), pp.
419
425
.
40.
Yu
,
H.
,
Xin
,
Y.
,
Wang
,
M.
, and
Liu
,
Q.
,
2018
, “
Hall-Petch Relationship in Mg Alloys: A Review
,”
J. Mater. Sci. Technol.
,
34
(
2
), pp.
248
256
.
41.
Cordero
,
Z. C.
,
Knight
,
B. E.
, and
Schuh
,
C. A.
,
2016
, “
Six Decades of the Hall-Petch Effect—A Survey of Grain-Size Strengthening Studies on Pure Metals
,”
Int. Mater. Rev.
,
61
(
8
), pp.
495
512
.
42.
Naik
,
S. N.
, and
Walley
,
S. M.
,
2020
, “
The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals
,”
J. Mater. Sci.
,
55
(
7
), pp.
2661
2681
.
You do not currently have access to this content.