Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A self-oscillating system can harness energy from the external environment to sustain its continuous motion, making it highly suitable for applications in soft robotics, military industry, energy, and other fields. This article introduces a system composed of a light-responsive liquid crystal elastomer fiber, a baffle, and a spring, capable of achieving self-oscillation under stable lighting conditions. Considering the established dynamic model of light-responsive liquid crystal elastomers (LCEs), a nonlinear dynamic model is introduced and used as the basis for exploring its dynamic characteristics. Numerical computations reveal that the coupled system exhibits two distinct motion states: self-oscillation and static states. The behavior of the system is sustained through the interaction of light energy and damping dissipation. Furthermore, a detailed investigation is conducted on the key system parameters affecting the frequency and amplitude of self-oscillation. In contrast to the complexity of current self-oscillating systems, this particular self-oscillating system features simplicity in structure, ease of manufacture, and strong adaptability. These advantages are expected to provide broader design possibilities for micro-machines and mechanical production processes.

References

1.
Ding
,
W. J.
,
2009
,
Self-Excited Vibration
,
Tsing-Hua University Press
,
Beijing, China
.
2.
Ge
,
F.
,
Yang
,
R.
,
Tong
,
X.
,
Camerel
,
F.
, and
Zhao
,
Y.
,
2018
, “
A Multifunctional Dye-Doped Liquid Crystal Polymer Actuator: Light-Guided Transportation, Turning in Locomotion, and Autonomous Motion
,”
Angew. Chem.
,
130
(
36
), pp.
11932
11937
.
3.
Jenkins
,
A.
,
2013
, “
Self-Oscillation
,”
Phys. Rep.
,
525
(
2
), pp.
167
222
.
4.
Li
,
M. H.
,
Keller
,
P.
,
Li
,
B.
,
Wang
,
X.
, and
Brunet
,
M.
,
2003
, “
Light-Driven Side-on Nematic Elastomer Actuators
,”
Adv. Mater.
,
15
(
7–8
), pp.
569
572
.
5.
Wang
,
X. Q.
,
Tan
,
C. F.
,
Chan
,
K. H.
,
Lu
,
X.
,
Zhu
,
L.
,
Kim
,
S. W.
, and
Ho
,
G. W.
,
2018
, “
In-Built Thermo-Mechanical Cooperative Feedback Mechanism for Self-Propelled Multimodal Locomotion and Electricity Generation
,”
Nat. Commun.
,
9
(
1
), pp.
1
10
.
6.
Wang
,
X. Q.
, and
Ho
,
G. W.
,
2022
, “
Design of Untethered Soft Material Micromachine for Life-Like Locomotion
,”
Mater. Today
,
53
, pp.
197
216
.
7.
Zhou
,
L.
,
Chen
,
H.
, and
Li
,
K.
,
2024
, “
Optically-Responsive Liquid Crystal Elastomer Thin Film Motors in Linear/Nonlinear Optical Fields
,”
Thin Walled Struct.
,
202
, p.
112082
.
8.
Zhang
,
Z.
,
Duan
,
N.
,
Lin
,
C.
, and
Hua
,
H.
,
2020
, “
Coupled Dynamic Analysis of a Heavily-Loaded Propulsion Shafting System With Continuous Bearing-Shaft Friction
,”
Int. J. Mech. Sci.
,
172
, p.
105431
.
9.
Chatterjee
,
S.
,
2011
, “
Self-Excited Oscillation Under Nonlinear Feedback With Time-Delay
,”
J. Sound Vib.
,
330
(
9
), pp.
1860
1876
.
10.
Hines
,
L.
,
Petersen
,
K.
,
Lum
,
G. Z.
, and
Sitti
,
M.
,
2017
, “
Soft Actuators for Small-Scale Robotics
,”
Adv. Mater.
,
29
(
13
), p.
1603483
.
11.
Sangwan
,
V.
,
Taneja
,
A.
, and
Mukherjee
,
S.
,
2004
, “
Design of a Robust Self-Excited Biped Walking Mechanism
,”
Mech. Mach. Theory
,
39
(
12
), pp.
1385
1397
.
12.
Kruse
,
K.
, and
Jülicher
,
F.
,
2005
, “
Oscillations in Cell Biology
,”
Curr. Opin. Cell Biol.
,
17
(
1
), pp.
20
26
.
13.
Zhao
,
D.
, and
Liu
,
Y.
,
2020
, “
A Prototype for Light-Electric Harvester Based on Light Sensitive Liquid Crystal Elastomer Cantilever
,”
Energy
,
198
, p.
117351
.
14.
Serak
,
S.
,
Tabiryan
,
N.
,
Vergara
,
R.
,
White
,
T. J.
,
Vaia
,
R. A.
, and
Bunning
,
T. J.
,
2010
, “
Liquid Crystalline Polymer Cantilever Oscillators Fueled by Light
,”
Soft Matter
,
6
(
4
), pp.
779
783
.
15.
He
,
Q.
,
Yin
,
R.
,
Hua
,
Y.
,
Jiao
,
W.
,
Mo
,
C.
,
Shu
,
H.
, and
Raney
,
J. R.
,
2023
, “
A Modular Strategy for Distributed, Embodied Control of Electronics-Free Soft Robots
,”
Sci. Adv.
,
9
(
27
), p.
eade9247
.
16.
Liao
,
W.
, and
Yang
,
Z.
,
2022
, “
The Integration of Sensing and Actuating Based on a Simple Design Fiber Actuator Towards Intelligent Soft Robots
,”
Adv. Mater. Technol.
,
7
(
6
), p.
2101260
.
17.
Qiu
,
Y.
,
Chen
,
J.
,
Dai
,
Y.
,
Zhou
,
L.
,
Yu
,
Y.
, and
Li
,
K.
,
2024
, “
Mathematical Modeling of the Displacement of a Light-Fuel Self-Moving Automobile With an On-Board Liquid Crystal Elastomer Propulsion Device
,”
Mathematics
,
12
(
9
), p.
1322
.
18.
Yu
,
Y.
,
Hu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Modeling the Light-Powered Self-Rotation of a Liquid Crystal Elastomer Fiber-Based Engine
,”
Phys. Rev. E
,
109
(
3
), p.
034701
.
19.
Wu
,
H.
,
Zhao
,
C.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Modeling of a Light-Fueled Self-Paddling Boat With a Liquid Crystal Elastomer-Based Motor
,”
Phys. Rev. E
,
109
(
4
), p.
044705
.
20.
Liu
,
J.
,
Qian
,
G.
,
Dai
,
Y.
,
Yuan
,
Z.
,
Song
,
W.
, and
Li
,
K.
,
2024
, “
Nonlinear Dynamics Modeling of a Light-Powered Liquid Crystal Elastomer-Based Perpetual Motion Machine
,”
Chaos Soliton Fract.
,
184
, p.
114957
.
21.
Bai
,
C.
,
Kang
,
J.
, and
Wang
,
Y. Q.
,
2024
, “
Light-Induced Motion of Three-Dimensional Pendulum With Liquid Crystal Elastomeric Fiber
,”
Int. J. Mech. Sci.
,
266
, p.
108911
.
22.
Chen
,
B.
,
Liu
,
C.
,
Xu
,
Z.
,
Wang
,
Z.
, and
Xiao
,
R.
,
2024
, “
Modeling the Thermo-Responsive Behaviors of Polydomain and Monodomain Nematic Liquid Crystal Elastomers
,”
Mech. Mater.
,
188
, p.
104838
.
23.
Yang
,
H.
,
Zhang
,
C.
,
Chen
,
B.
,
Wang
,
Z.
,
Xu
,
Y.
, and
Xiao
,
R.
,
2023
, “
Bioinspired Design of Stimuli-Responsive Artificial Muscles With Multiple Actuation Modes
,”
Smart Mater. Struct.
,
32
(
8
), p.
085023
.
24.
Sun
,
J.
,
Wang
,
Y.
,
Liao
,
W.
, and
Yang
,
Z.
,
2021
, “
Ultrafast, High-Contractile Electrothermal-Driven Liquid Crystal Elastomer Fibers Towards Artificial Muscles
,”
Small
,
17
(
44
), p.
2103700
.
25.
Shen
,
Q.
,
Trabia
,
S.
,
Stalbaum
,
T.
,
Palmre
,
V.
,
Kim
,
K.
, and
Oh
,
I. K.
,
2016
, “
A Multiple-Shape Memory Polymer-Metal Composite Actuator Capable of Programmable Control, Creating Complex 3D Motion of Bending, Twisting, and Oscillation
,”
Sci. Rep.
,
6
(
1
), p.
24462
.
26.
Boissonade
,
J.
, and
De Kepper
,
P.
,
2011
, “
Multiple Types of Spatio-Temporal Oscillations Induced by Differential Diffusion in the Landolt Reaction
,”
Phys. Chem. Chem. Phys.
,
13
(
9
), pp.
4132
4137
.
27.
Yoshida
,
R.
,
2010
, “
Self-Oscillating Gels Driven by the Belousov–Zhabotinsky Reaction as Novel Smart Materials
,”
Adv. Mater.
,
22
(
31
), pp.
3463
3483
.
28.
Hua
,
M.
,
Kim
,
C.
,
Du
,
Y.
,
Wu
,
D.
,
Bai
,
R.
, and
He
,
X.
,
2021
, “
Swaying Gel: Chemo-Mechanical Self-Oscillation Based on Dynamic Buckling
,”
Matter
,
4
(
3
), pp.
1029
1041
.
29.
Corbett
,
D.
, and
Warner
,
M.
,
2009
, “
Deformation and Rotations of Free Nematic Elastomers in Response to Electric Fields
,”
Soft Matter
,
5
(
7
), pp.
1433
1439
.
30.
Bazir
,
A.
,
Baumann
,
A.
,
Ziebert
,
F.
, and
Kulić
,
I. M.
,
2020
, “
Dynamics of Fiberboids
,”
Soft Matter
,
16
(
22
), pp.
5210
5223
.
31.
Shen
,
B.
, and
Kang
,
S. H.
,
2021
, “
Designing Self-Oscillating Matter
,”
Matter
,
4
(
3
), pp.
766
769
.
32.
Ge
,
D.
,
Dai
,
Y.
, and
Li
,
K.
,
2023
, “
Self-Sustained Euler Buckling of an Optically Responsive rod With Different Boundary Constraints
,”
Polymers
,
15
(
2
), p.
316
.
33.
Gelebart
,
A. H.
,
Jan Mulder
,
D.
,
Varga
,
M.
,
Konya
,
A.
,
Vantomme
,
G.
,
Meijer
,
E. W.
,
Selinger
,
R. L. B.
, and
Broer
,
D. J.
,
2017
, “
Making Waves in a Photoactive Polymer Film
,”
Nature
,
546
(
7660
), pp.
632
636
.
34.
Lv
,
X.
,
Yu
,
M.
,
Wang
,
W.
, and
Yu
,
H.
,
2021
, “
Photothermal Pneumatic Wheel With High Loadbearing Capacity
,”
Compos. Commun
,
24
, p.
100651
.
35.
Qiu
,
Y.
, and
Li
,
K.
,
2024
, “
Self-Rotation-Eversion of an Anisotropic-Friction-Surface Torus
,”
Int. J. Mech. Sci.
,
281
, p.
109584
.
36.
He
,
Q.
,
Wang
,
Z.
,
Wang
,
Y.
,
Wang
,
Z.
,
Li
,
C.
,
Annapooranan
,
R.
,
Zeng
,
J.
,
Chen
,
R.
, and
Cai
,
S.
,
2021
, “
Electrospun Liquid Crystal Elastomer Microfiber Actuator
,”
Sci. Rob.
,
6
(
57
), p.
eabi9704
.
37.
Zeng
,
H.
,
Lahikainen
,
M.
,
Liu
,
L.
,
Ahmed
,
Z.
,
Wani
,
O. M.
,
Wang
,
M.
,
Yang
,
H.
, and
Priimagi
,
A.
,
2019
, “
Light-Fuelled Freestyle Self-Oscillators
,”
Nat. Commun.
,
10
(
1
), p.
5057
.
38.
Pilz da Cunha
,
M.
,
Peeketi
,
A. R.
,
Ramgopal
,
A.
,
Annabattula
,
R. K.
, and
Schenning
,
A. P.
,
2020
, “
Light-Driven Continual Oscillatory Rocking of a Polymer Film
,”
ChemistryOpen
,
9
(
11
), pp.
1149
1152
.
39.
Graeber
,
G.
,
Regulagadda
,
K.
,
Hodel
,
P.
,
Küttel
,
C.
,
Landolf
,
D.
,
Schutzius
,
T. M.
, and
Poulikakos
,
D.
,
2021
, “
Leidenfrost Droplet Trampolining
,”
Nat. Commun.
,
12
(
1
), p.
1727
.
40.
Kim
,
Y.
,
van den Berg
,
J.
, and
Crosby
,
A. J.
,
2021
, “
Autonomous Snapping and Jumping Polymer Gels
,”
Nat. Mater.
,
20
(
12
), pp.
1695
1701
.
41.
Xu
,
P.
,
Jin
,
J.
, and
Li
,
K.
,
2021
, “
Light-Powered Self-Excited Bouncing of a Liquid Crystal Elastomer Ball
,”
Int. J. Mech. Sci.
,
208
, p.
106686
.
42.
Wu
,
H.
,
Lou
,
J.
,
Dai
,
Y.
,
Zhang
,
B.
, and
Li
,
K.
,
2024
, “
Bifurcation Analysis in Liquid Crystal Elastomer Spring Self-Oscillators Under Linear Light Fields
.”
Chaos, Solitons Fractals
,
181
, p.
114587
.
43.
Zhao
,
J.
,
Dai
,
C.
,
Dai
,
Y.
,
Wu
,
J.
, and
Li
,
K.
,
2024
, “
Self-Oscillation of Cantilevered Silicone Oil Paper Sheet System Driven by Steam
,”
Thin Walled Struct.
,
203
, p.
112270
.
44.
Liu
,
J.
,
Zhao
,
J.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2023
, “
Self-Oscillating Curling of a Liquid Crystal Elastomer Beam Under Steady Light
,”
Polymers
,
15
(
2
), p.
344
.
45.
Baumann
,
A.
,
Sánchez-Ferrer
,
A.
,
Jacomine
,
L.
,
Martinoty
,
P.
,
Le Houerou
,
V.
,
Ziebert
,
F.
, and
Kulić
,
I. M.
,
2018
, “
Motorizing Fibres with Geometric Zero-Energy Modes
,”
Nat. Mater.
,
17
(
6
), pp.
523
527
.
46.
Li
,
K.
,
Chen
,
Z.
, and
Xu
,
P.
,
2022
, “
Light-Propelled Self-Sustained Swimming of a Liquid Crystal Elastomer Torus at Low Reynolds Number
,”
Int. J. Mech. Sci.
,
219
, p.
107128
.
47.
Xu
,
P.
,
Chen
,
Y.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Chaotic Motion Behaviors of Liquid Crystal Elastomer Pendulum Under Periodic Illumination
,”
Results Phys.
,
56
, p.
107332
.
48.
Wu
,
H.
,
Dai
,
Y.
,
Li
,
K.
, and
Xu
,
P.
,
2024
, “
Theoretical Study of Chaotic Jumping of Liquid Crystal Elastomer Ball Under Periodic Illumination
,”
Nonlinear Dyn.
,
112
(
10
), pp.
7799
7815
.
49.
Xu
,
P.
,
Chen
,
Y.
,
Sun
,
X.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Light-Powered Self-Sustained Chaotic Motion of a Liquid Crystal Elastomer-Based Pendulum
,”
Chaos Soliton Fract.
,
184
, p.
115027
.
50.
Wu
,
H.
,
Zhang
,
B.
, and
Li
,
K.
,
2024
, “
Synchronous Behaviors of Three Coupled Liquid Crystal Elastomer-Based Spring Oscillators Under Linear Temperature Fields
,”
Phys. Rev. E
,
109
(
2
), p.
024701
.
51.
Wang
,
Y.
,
Dang
,
A.
,
Zhang
,
Z.
,
Yin
,
R.
,
Gao
,
Y.
,
Feng
,
L.
, and
Yang
,
S.
,
2020
, “
Repeatable and Reprogrammable Shape Morphing From Photoresponsive Gold Nanorod/Liquid Crystal Elastomers
,”
Adv. Mater.
,
32
(
46
), p.
2004270
.
52.
Wang
,
Y.
,
Yin
,
R.
,
Jin
,
L.
,
Liu
,
M.
,
Gao
,
Y.
,
Raney
,
J.
, and
Yang
,
S.
,
2023
, “
3D-Printed Photoresponsive Liquid Crystal Elastomer Composites for Free-Form Actuation
,”
Adv. Funct. Mater.
,
33
(
4
), p.
2210614
.
53.
Liao
,
B.
,
Zang
,
H.
,
Chen
,
M.
,
Wang
,
Y.
,
Lang
,
X.
,
Zhu
,
N.
,
Yang
,
Z.
, and
Yi
,
Y.
2020
, “
Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake
,”
Soft Rob.
,
7
(
4
), pp.
500
511
.
54.
Wang
,
Y.
,
Liu
,
J.
, and
Yang
,
S.
,
2022
, “
Multi-Functional Liquid Crystal Elastomer Composites
,”
Appl. Phys. Rev.
,
9
(
1
), p.
011301
.
55.
Herbert
,
K. M.
,
Fowler
,
H. E.
,
McCracken
,
J. M.
,
Schlafmann
,
K. R.
,
Koch
,
J. A.
, and
White
,
T. J.
,
2022
, “
Synthesis and Alignment of Liquid Crystalline Elastomers
,”
Nat. Rev. Mater.
,
7
(
1
), pp.
23
38
.
56.
Cheng
,
Y. C.
,
Lu
,
H. C.
,
Lee
,
X.
,
Zeng
,
H.
, and
Priimagi
,
A.
,
2020
, “
Kirigami-Based Light-Induced Shape-Morphing and Locomotion
,”
Adv. Mater.
,
32
(
7
), p.
1906233
.
57.
Yu
,
Y.
,
Zhou
,
L.
,
Du
,
C.
,
Zhu
,
F.
,
Dai
,
Y.
,
Ge
,
D.
, and
Li
,
K.
,
2024
, “
Self-Galloping of a Liquid Crystal Elastomer Catenary Cable Under a Steady Temperature Field
,”
Thin Walled Struct.
,
202
, p.
112071
.
58.
Zhang
,
J.
,
Guo
,
Y.
,
Hu
,
W.
,
Soon
,
R. H.
,
Davidson
,
Z. S.
, and
Sitti
,
M.
,
2021
, “
Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines
,”
Adv. Mater.
,
33
(
8
), p.
2006191
.
59.
Liu
,
J.
,
Shi
,
F.
,
Song
,
W.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Modeling of Self-Oscillating Flexible Circuits Based on Liquid Crystal Elastomers
,”
Int. J. Mech. Sci.
,
270
, p.
109099
.
60.
Wang
,
L.
,
Wei
,
Z.
,
Xu
,
Z.
,
Yu
,
Q.
,
Wu
,
Z. L.
,
Wang
,
Z.
,
Qian
,
J.
, and
Xiao
,
R.
,
2023
, “
Shape Morphing of 3D Printed Liquid Crystal Elastomer Structures With Precuts
,”
ACS Appl. Polym. Mater.
,
5
(
9
), pp.
7477
7484
.
61.
Yu
,
Y.
,
Li
,
L.
,
Liu
,
E.
,
Han
,
X.
,
Wang
,
J.
,
Xie
,
Y. X.
, and
Lu
,
C.
,
2022
, “
Light-Driven Core-Shell Fiber Actuator Based on Carbon Nanotubes/Liquid Crystal Elastomer for Artificial Muscle and Phototropic Locomotion
,”
Carbon
,
187
, pp.
97
107
.
62.
Lendlein
,
A.
,
Jiang
,
H.
,
Jünger
,
O.
, and
Langer
,
R.
,
2005
, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
(
7035
), pp.
879
882
.
63.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
64.
Gan
,
F.
,
Cheng
,
Q.
, and
Li
,
K.
,
2022
, “
Light-Fueled Self-Excited Vibration of a Liquid Crystal Elastomer Spring Oscillator
,”
J. Sound Vib.
,
526
, p.
116820
.
65.
Chen
,
Y.
,
Zhao
,
H.
,
Mao
,
J.
,
Chirarattananon
,
P.
,
Helbling
,
E. F.
,
Hyun
,
N. S. P.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2019
, “
Controlled Flight of a Microrobot Powered by Soft Artificial Muscles
,”
Nature
,
575
(
7782
), pp.
324
329
.
66.
Zhao
,
D.
,
Liu
,
Y.
, and
Liu
,
C.
,
2017
, “
Transverse Vibration of Nematic Elastomer Timoshenko Beams
,”
Phys. Rev. E
,
95
(
1
), p.
012703
.
67.
Yu
,
Y.
,
Hu
,
H.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
A Light-Powered Self-Rotating Liquid Crystal Elastomer Drill
,”
Heliyon
,
10
(
5
), p.
e27748
.
68.
Yang
,
L.
,
Chang
,
L.
,
Hu
,
Y.
,
Huang
,
M.
,
Ji
,
Q.
,
Lu
,
P.
,
Chen
,
W.
, and
Wu
,
Y.
,
2020
, “
An Autonomous Soft Actuator With Light-Driven Self-Sustained Wavelike Oscillation for Phototactic Self-Locomotion and Power Generation
,”
Adv. Funct. Mater.
,
30
(
15
), p.
1908842
.
69.
Hauser
,
A. W.
,
Sundaram
,
S.
, and
Hayward
,
R. C.
,
2018
, “
Photothermocapillary Oscillators
,”
Phys. Rev. Lett.
,
121
(
15
), p.
158001
.
70.
Korner
,
K.
,
Kuenstler
,
A. S.
,
Hayward
,
R. C.
,
Audoly
,
B.
, and
Bhattacharya
,
K.
,
2020
, “
A Nonlinear Beam Model of Photomotile Structures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
18
), pp.
9762
9770
.
71.
Kuenstler
,
A. S.
,
Chen
,
Y.
,
Bui
,
P.
,
Kim
,
H.
,
DeSimone
,
A.
,
Jin
,
L.
, and
Hayward
,
R. C.
,
2020
, “
Blueprinting Photothermal Shape-Morphing of Liquid Crystal Elastomers
,”
Adv. Mater.
,
32
(
17
), p.
2000609
.
72.
Parrany
,
A. M.
,
2018
, “
Nonlinear Light-Induced Vibration Behavior of Liquid Crystal Elastomer Beam
,”
Int. J. Mech. Sci.
,
136
, pp.
179
187
.
73.
Zhao
,
D.
, and
Liu
,
Y.
,
2019
, “
Photomechanical Vibration Energy Harvesting Based on Liquid Crystal Elastomer Cantilever
,”
Smart Mater. Struct.
,
28
(
7
), p.
075017
.
74.
Rodriguez
,
A. S. M.
,
Hosseini
,
M.
, and
Paik
,
J.
,
2020
, “
Hybrid Control Strategy for Force and Precise end Effector Positioning of a Twisted String Actuator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2791
2802
.
75.
Würtz
,
T.
,
May
,
C.
,
Holz
,
B.
,
Natale
,
C.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2010
, “
The Twisted String Actuation System: Modeling and Control
,”
2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montreal, Canada
,
July 6–9
, IEEE, pp.
1215
1220
.
76.
Qiu
,
Y.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network
,”
Mathematics
,
12
(
7
), pp.
1019
.
77.
Dai
,
L.
,
Wang
,
L.
,
Chen
,
B.
,
Xu
,
Z.
,
Wang
,
Z.
, and
Xiao
,
R.
,
2023
, “
Shape Memory Behaviors of 3D Printed Liquid Crystal Elastomers
,”
Soft Sci.
,
3
(
1
), p.
4.4
.
78.
Finkelmann
,
H.
,
Nishikawa
,
E.
,
Pereira
,
G. G.
, and
Warner
,
M.
,
2001
, “
A New Opto-Mechanical Effect in Solids
,”
Phys. Rev. Lett.
,
87
(
1
), p.
015501
.
79.
Braun
,
L. B.
,
Hessberger
,
T.
,
Pütz
,
E.
,
Müller
,
C.
,
Giesselmann
,
F.
,
Serra
,
C. A.
, and
Zentel
,
R.
,
2018
, “
Actuating Thermo- and Photo-Responsive Tubes From Liquid Crystalline Elastomers
,”
J. Mater. Chem. C
,
6
(
34
), pp.
9093
9101
.
You do not currently have access to this content.