Abstract

In this paper, a technique is developed for determining the nonstationary response statistics of linear oscillators endowed with fractional derivative elements. Notably, fractional operators are particularly effective in modeling solid mechanics problems as they offer the option of influencing both the elasticity and the energy dissipation capacity of the system. In this paper, particular attention is devoted to the case of fractional derivatives of rational order that approximates reasonably well any real order model. The oscillators are subjected to stationary stochastic excitations, and the pertinent nonstationary response statistical moments are determined by first introducing a finite number of oscillator response related states; this is afforded by the rational number order of the fractional operator. Next, the technique involves proceeding to treating the problem in the Laplace transform domain. This leads to multiple convolution integrals determined by representing the transfer function of the oscillator in a partial fraction form by a pole-residue formulation. In this manner, the response evolutionary power spectral density of the fractional oscillator is derived in a closed form, while nonstationary second-order statistics can be obtained by mundane numerical integration in the frequency domain. Applications to oscillators comprising one or two fractional derivative elements are presented, considering the case of a white noise excitation and of a random process possessing the classical Kanai–Tajimi spectrum. Reliability of the developed technique is assessed by juxtaposing its analytical results with pertinent Monte Carlo simulation data.

References

1.
Nutting
,
P. G.
,
1921
, “
A New General Law Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
678
685
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
4.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
,
2007
,
Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Dordrecht
.
5.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
6.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2009
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
7.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120433
.
8.
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Towards a Unified Approach to Nonlocal Elasticity Via Fractional-Order Mechanics
,”
Int. J. Mech. Sci.
,
189
, p.
105992
.
9.
Tarasov
,
V. E.
,
2017
, “
Fractional Mechanics of Elastic Solids: Continuum Aspects
,”
J. Eng. Mech.
,
143
(
5
), p.
D4016001
.
10.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
S.
,
2011
, “
Visco-elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.
11.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Fractional-Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
,
117
(
9
), pp.
2708
2724
.
12.
Hwang
,
J. S.
, and
Wang
,
J. C.
,
1998
, “
Seismic Response Prediction of High Damping Rubber Bearings Using Fractional Derivative Maxwell Model
,”
Eng. Struct.
,
20
(
9
), pp.
849
856
.
13.
Koh
,
C. G.
, and
Kelly
,
L. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base Isolated Models
,”
Earthq. Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.
14.
Di Matteo
,
A.
,
Lo Iacono
,
F.
,
Navarra
,
G.
, and
Pirrotta
,
A.
,
2015
, “
Innovative Modeling of Tuned Liquid Column Damper Motion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
23
(
1–3
), pp.
229
244
.
15.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
(
13
), pp.
1774
1779
.
16.
Shen
,
K. L.
, and
Soong
,
T. T.
,
1995
, “
Modeling of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
,
121
(
6
), pp.
694
701
.
17.
Huang
,
Z. L.
, and
Jin
,
X. L.
,
2009
, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fractional Derivative
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1121
1135
.
18.
Spanos
,
P. D.
, and
Evangelatos
,
G.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives—Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthq. Eng.
,
30
(
9
), pp.
811
821
.
19.
Pomaro
,
B.
, and
Spanos
,
P. D.
,
2023
, “
Extended Statistical Linearization Approach for Estimating Non-Stationary Response Statistics of Systems Comprising Fractional Derivative Elements
,”
Probab. Eng. Mech.
,
74
, p.
103471
.
20.
Di Matteo
,
A.
,
Spanos
,
P. D.
, and
Pirrotta
,
A.
,
2018
, “
Approximate Survival Probability Determination of Hysteretic Systems With Fractional Derivative Elements
,”
Probab. Eng. Mech.
,
54
, pp.
138
146
.
21.
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
On the Stochastic Response of Fractionally-Damped Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5131
5142
.
22.
Xu
,
Y.
,
Li
,
Y. G.
, and
Liu
,
D.
,
2014
, “
Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031015
.
23.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.
24.
Di Matteo
,
A.
,
2023
, “
Response of Nonlinear Oscillators With Fractional Derivative Elements Under Evolutionary Stochastic Excitations: A Path Integral Approach Based on Laplace’s Method of Integration
,”
Probab. Eng. Mech.
,
71
, p.
103402
.
25.
Spanos
,
P. D.
, and
Zeldin
,
B.
,
1997
, “
Random Vibration of Systems With Frequency-Dependent Parameters or Fractional Derivatives
,”
J. Eng. Mech.
,
123
(
3
), pp.
290
292
.
26.
Pinnola
,
F.
,
2016
, “
Statistical Correlation of Fractional Oscillator Response by Complex Spectral Moments and State Variable Expansion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
39
, pp.
343
359
.
27.
Alotta
,
G.
,
Di Paola
,
M.
,
Failla
,
G.
, and
Pinnola
,
F. P.
,
2018
, “
On the Dynamics of Non-Local Fractional Viscoelastic Beams Under Stochastic Agencies
,”
Compos. Part B
,
137
, pp.
102
110
.
28.
Denoël
,
V.
,
2018
, “
Multiple Timescale Spectral Analysis of a Linear Fractional Viscoelastic System Under Colored Excitation
,”
Probab. Eng. Mech.
,
53
, pp.
66
74
.
29.
Agrawal
,
O.
,
2001
, “
Stochastic Analysis of Dynamic Systems Containing Fractional Derivatives
,”
J. Sound Vib.
,
247
(
5
), pp.
927
938
.
30.
Agrawal
,
O.
,
2004
, “
Analytical Solution for Stochastic Response of a Fractionally Damped Beam
,”
ASME J. Vib. Acoust.
,
126
(
4
), pp.
561
566
.
31.
Ye
,
K.
,
Li
,
L.
, and
Tang
,
J.
,
2003
, “
Stochastic Seismic Response of Structures With Added Viscoelastic Dampers Modeled by Fractional Derivative
,”
Earthq. Eng. Eng. Vib.
,
2
(
1
), pp.
133
139
.
32.
Huang
,
Z.
,
Jin
,
X.
,
Lim
,
C.
, and
Wang
,
Y.
,
2010
, “
Statistical Analysis for Stochastic Systems Including Fractional Derivatives
,”
Nonlinear Dyn.
,
59
(
1–2
), pp.
339
349
.
33.
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,”
Probab. Eng. Mech.
,
28
, pp.
85
90
.
34.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2016
, “
Harmonic Wavelets Based Response Evolutionary Power Spectrum Determination of Linear and Non-Linear Oscillators With Fractional Derivative Elements
,”
Int. J. Nonlinear Mech.
,
80
, pp.
66
75
.
35.
Cao
,
Q.
,
Hu
,
S.
, and
Li
,
H.
,
2020
, “
Evaluating Response of Simple Oscillators to a Particular Kind of Time-Frequency Non-Separable Evolutionary Stochastic Processes
,”
Probab. Eng. Mech.
,
61
, p.
103076
.
36.
Hu
,
S.
,
Cao
,
Q.
, and
Li
,
H.
,
2019
, “
Laplace Domain Method for Evaluating Mean-Square Response of Simple Oscillators to Nonstationary Excitation
,”
Probab. Eng. Mech.
,
56
, pp.
1
13
.
37.
Cao
,
Q.
,
Hu
,
A. L. J.
, and
Li
,
H.
,
2021
, “
Nonstationary Response Statistics of Fractional Oscillators to Evolutionary Stochastic Excitation
,”
Commun. Nonlinear Sci. Numer Simul.
,
103
, p.
105962
.
38.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Spanos
,
P. D.
,
2014
, “
Analysis of Multi-Degree-of-Freedom Systems With Fractional Derivative Elements of Rational Order
,”
ICFDA 14 International Conference on Fractional Differentiation and Its Applications
,
Catania, Italy
,
June 23–25
, pp.
1
6
.
39.
Spanos
,
P. D.
, and
Miller
,
S. M.
,
1994
, “
Hilbert Transform Generalization of a Classical Random Vibration Integral
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
575
581
.
40.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
John Wiley and Sons, Inc.
,
New York
.
41.
Kazem
,
S.
,
2013
, “
Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform
,”
Int. J. Nonlinear Sci.
,
16
(
1
), pp.
3
11
.
42.
Kong
,
F.
,
Xu
,
Y.
,
Ding
,
Z.
, and
Sun
,
X.
,
2023
, “
Analytical Nonstationary Response of Linear Stochastic MDOF Systems Endowed With Half-Order Fractional Derivative Elements
,”
ASCE-ASME J. Risk. Uncertain. Eng. Syst. Part A. Civ. Eng.
,
10
(
1
).
43.
Cong
,
N. D.
,
Doan
,
T. S.
,
Siegmund
,
S.
, and
Tuan
,
H. T.
,
2016
, “
On Stable Manifolds for Fractional Differential Equations in High-Dimensional Spaces
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1885
1894
.
44.
Artale
,
V.
,
Navarra
,
G.
,
Ricciardello
,
A.
, and
Barone
,
G.
,
2017
, “
Exact Closed-Form Fractional Spectral Moments for Linear Fractional Oscillators Excited by a White Noise
,”
ASCE-ASME J. Risk. Uncertain. Eng. Syst. Part B. Mech. Eng.
,
3
(
3
), p.
030901
.
45.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
Mineola, NY
.
You do not currently have access to this content.