Abstract

This paper illustrates how particle size affects the initial yield stress of particle-reinforced composites. A formulation in a closed form is presented to demonstrate the size effect of yielding of the composites. This paper also demonstrates that there is an upper bound and a lower bound for the size-dependent yield stress with the change of particle size. This means that decreasing particle size increases its yield stress up to an upper bound. Similarly, increasing particle size decrease its yield stress up to a lower bound. In this paper the asymptotic homogenization method is used in framework of the Cosserat elasticity. A virtual “unreinforced matrix” is introduced as a reference configuration. As a numerical example, the size effect of yielding of SiCp/Al is predicted.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Arsenault
,
R. J.
,
Fishman
,
S.
, and
Taya
,
M.
,
1994
, “
Deformation and Fracture Behavior of Metal-Ceramic Matrix Composite Materials
,”
Prog. Mater. Sci.
,
38
, pp.
1
157
.
2.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
3.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
4.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
, “Théorie des Corps Déformables,” Hermann, A. et Fils, Paris, (in French).
5.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech. JSTOR
,
15
(
6
), pp.
909
923
.
6.
Eringen
,
A. C.
,
1999
,
Microcontinuum Field Theories I: Foundations and Solids
, first ed.,
Springer
,
New York
.
7.
Nowacki
,
W.
,
1974
,
The Linear Theory of Micropolar Elasticity
,
Micropolar Elasticity
.
8.
Nowacki
,
W.
,
1986
,
Theory of Asymmetric Elasticity (Translated by Zorski, H.)
,
Pergamon Press
.
9.
Maugin
,
G. A.
, and
Metrikine
,
A. V.
,
2010
,
Mechanics of Generalized Continua: One Hundred Years After the Cosserats, First ed.
,
Springer
,
New York
.
10.
Markert
,
B.
,
2011
,”
“Advances in Extended and Multifield Theories for Continua, First ed.,” Lecture Notes in Applied and Computational Mechanics
,
Springer
,
Berlin, Heidelberg
.
11.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2013
,
Generalized Continua—From the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences, First ed.
,
Springer
,
Vienna
.
12.
Eremeyev
,
V.
,
Lebedev
,
L.
, and
Altenbach
,
H.
,
2013
,
Foundations of Micropolar Mechanics, First ed.
,
Springer
,
Vienna
.
13.
Maugin
,
G.
,
2013
,
Continuum Mechanics Through the Twentieth Century. A Concise Historical Perspective, First ed.
,
Springer
,
Dordrecht
.
14.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North-Holland Publ.
,
Amsterdam
.
15.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory, First ed.
,
Springer-Verlag
,
Moscow
.
16.
Sanchez-Palencia
,
E.
,
1985
,
Homogenization Techniques for Composite Media, First ed.
,
Springer-Verlag
,
Moscow
.
17.
Lions
,
L. J.
,
1981
,
Some Methods in the Mathematical Analysis of System and Their Control
,
Gordon and Breach
,
New York
.
18.
Forest
,
S.
,
Padel
,
F.
, and
Sab
,
K.
,
2001
, “
Asymptotic Analysis of Heterogeneous Cosserat Media
,”
Int. J. Solids Struct.
,
38
(
26–27
), pp.
4585
4608
.
19.
Gorbachev
,
V.
, and
Emel’yanov
,
A.
,
2014
, “
Homogenization of the Equations of the Cosserat Theory of Elasticity of Inhomogeneous Bodies
,”
Mech. Solids
,
49
(
1
), pp.
73
82
.
20.
Rezakhani
,
R.
, and
Cusatis
,
G.
,
2016
, “
Asymptotic Expansion Homogenization of Discrete Fine-Scale Models With Rotational Degrees of Freedom for the Simulation of Quasi-Brittle Materials
,”
J. Mech. Phys. Solids
,
88
, pp.
320
345
.
21.
Bacigalupoa
,
A.
,
Morini
,
L.
, and
Piccolroaz
,
A.
,
2016
, “
Multiscale Asymptotic Homogenization Analysis of Thermo-Diffusive Composite Materials
,”
Int. J. Solids Struct.
,
85–86
, pp.
15
33
.
22.
Rodríguez-Ramos
,
R.
,
Yanes
,
V.
,
Espinosa-Almeyda
,
Y.
,
Otero
,
J. A.
,
Sabina
,
F. J.
,
Sánchez-Valdés
,
C. F.
, and
Lebon
,
F.
,
2022
, “
Micro–Macro Asymptotic Approach Applied to Heterogeneous Elastic Micropolar Media: Analysis of Some Examples
,”
Int. J. Solids Struct.
,
239–240
, p.
111444
.
23.
De Borst
,
R.
,
1991
, “
Simulation of Strain Localisation: A Reappraisal of the Cosserat Continuum
,”
Eng. Comput.
,
8
(
4
), pp.
317
332
.
24.
Meguid
,
S. A.
, and
Kalamkarov
,
A. L.
,
1994
, “
Asymptotic Homogenization of Elastic Composite Materials With a Regular Structure
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
303
316
.
25.
Zhang
,
R. J.
, and
Liu
,
Y.
,
2021
, “
Initial Yield Limits of Particle-Reinforced Composites
,”
Chin. J. Solid Mech.
,
42
(
6
), pp.
718
724
.
26.
Lakes
,
R. S.
,
1995
, “Experimental Methods for Study of Cosserat Elastic Solids and Other Generalized Continua,”
Chapter 1, p. 1–22 in Continuum Models for Materials With Micro-Structure
,
H.-B.
Mühlhaus
, ed.,
Wiley
,
Chichester
.
27.
Polizzotto
,
C.
,
2017
, “
A Hierarchy of Simplified Constitutive Models Within Isotropic Strain Gradient Elasticity
,”
Eur. J. Mech. A/Solids
,
61
, pp.
92
109
.
28.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity-I: Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
29.
Gao
,
H.
, and
Huang
,
Y.
,
2003
, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
113
118
.
30.
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
1999
, “Strain-Gradient Plasticity at the Micron Scale,”
Progress in Mechanical Behavior of Materials
,
F.
Ellyin
, and
J. W.
Provan
, eds.,
Fleming Printing Ltd.
,
Victoria British Columbia, Canada
, pp.
1051
1056
.
31.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II: Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.
32.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plasticity
,
20
(
4–5
), pp.
753
782
.
33.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Met. Mater.
,
42
(
2
), pp.
475
487
.
34.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
You do not currently have access to this content.