Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This work numerically explores the anisotropy, impact phase wave propagation, buckling resistance, and natural vibration of ultra-high performance concrete (UHPC) and UHPC-steel interpenetrating phase composite (IPC) with triply periodic minimal surfaces (TPMSs), including sheet and solid gyroid, primitive, diamond, and the Schoen I-graph-wrapped package (I-WP). The experiment is conducted to verify the accuracy of the numerical model in terms of Young's modulus of polylactic acid (PLA)-based TPMS lattices and PLA-cement IPCs with TPMS cores, with the highest percent difference of 15% found for IPCs and 17% found for lattice. The results indicate that UHPC material with sheet gyroid exhibits the least extreme anisotropy in response to the varying orientation among other lattices regardless of the change of solid density, making it the ideal candidate for construction materials. Interestingly, compared to UHPC-based TPMS lattice, IPCs possess a much smaller anisotropy and exhibit almost isotropy regardless the variation of solid density and TPMS topology, offering a free selection of TPMS type to fabricate IPCs without much care of anisotropy. The phase wave velocity and buckling resistance of UHPC- and IPC-based beams with TPMSs nonlinearly decrease with a drop of TPMS solid density, but it is the almost linear pattern for the case of natural vibration frequency. UHPC material and IPC with sheet gyroid lattice are found to possess the lowest phase wave velocity and exhibit the least anisotropy of wave propagation, showing it as an ideal candidate for UHPC material to suppress the destructive energy induced by the external impact.

References

1.
Yao
,
Y.
,
Silva
,
F. A.
,
Butler
,
M.
,
Mechtcherine
,
V.
, and
Mobasher
,
B.
,
2021
, “
Tensile and Flexural Behavior of Ultra-High Performance Concrete (UHPC) Under Impact Loading
,”
Int. J. Impact Eng.
,
153
, p.
103866
.
2.
Vu
,
T. S.
,
Tran
,
B. V.
,
Nguyen
,
H. Q.
, and
Chateau
,
X.
,
2023
, “
A Refined Morphological Representative Pattern Approach to the Behavior of Polydisperse Highly-Filled Inclusion–Matrix Composites
,”
Int. J. Solids Struct.
,
270
, p.
112253
.
3.
Le
,
B. A.
,
Vu
,
V. H.
,
Seo
,
S. Y.
,
Tran
,
B. V.
,
Nguyen-Sy
,
T.
,
Le
,
M. C.
, and
Vu
,
T. S.
,
2022
, “
Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
,”
KSCE J. Civ. Eng.
,
26
(
11
), pp.
4664
4679
.
4.
Nguyen
,
H. Q.
,
Tran
,
B. V.
, and
Vu
,
T. S.
,
2022
, “
Numerical Approach to Predict the Flexural Damage Behavior of Pervious Concrete
,”
Case Stud. Constr. Mater.
,
16
, p.
e00946
.
5.
Vu
,
V. H.
,
Tran
,
B. V.
,
Le
,
B. A.
, and
Nguyen
,
H. Q.
,
2021
, “
Prediction of the Relationship Between Strength and Porosity of Pervious Concrete: A Micromechanical Investigation
,”
Mech. Res. Commun.
,
118
, p.
103791
.
6.
Xi
,
B.
,
Huang
,
Z.
,
Al-Obaidi
,
S.
, and
Ferrara
,
L.
,
2023
, “
Predicting Ultra High-Performance Concrete Self-Healing Performance Using Hybrid Models Based on Metaheuristic Optimization Techniques
,”
Constr. Build. Mater.
,
381
, p.
131261
.
7.
Yoo
,
D. Y.
, and
Shin
,
W.
,
2021
, “
Improvement of Fiber Corrosion Resistance of Ultra-High-Performance Concrete by Means of Crack Width Control and Repair
,”
Cem. Concr. Compos.
,
121
, p.
104073
.
8.
Wu
,
C.
,
Oehlers
,
D. J.
,
Rebentrost
,
M.
,
Leach
,
J.
, and
Whittaker
,
A. S.
,
2009
, “
Blast Testing of Ultra-High Performance Fibre and FRP-Retrofitted Concrete Slabs
,”
Eng. Struct.
,
31
(
9
), pp.
2060
2069
.
9.
Wu
,
H.
,
Fang
,
Q.
,
Chen
,
X. W.
,
Gong
,
Z. M.
, and
Liu
,
J. Z.
,
2015
, “
Projectile Penetration of Ultra-High Performance Cement Based Composites at 510–1320 m/s
,”
Constr. Build. Mater.
,
74
, pp.
188
200
.
10.
Andrade
,
C.
, and
Torres
,
J.
,
2013
, “
Long Term Carbonation of UHPC
,”
Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete
,
Marseille, France
,
Oct. 1–3
, pp.
249
256
.
11.
Xue
,
J.
,
Briseghella
,
B.
,
Huang
,
F.
,
Nuti
,
C.
,
Tabatabai
,
H.
, and
Chen
,
B.
,
2020
, “
Review of Ultra-High Performance Concrete and Its Application in Bridge Engineering
,”
Constr. Build. Mater.
,
260
, p.
119844
.
12.
Li
,
J.
,
Wu
,
Z.
,
Shi
,
C.
,
Yuan
,
Q.
, and
Zhang
,
Z.
,
2020
, “
Durability of Ultra-High Performance Concrete—A Review
,”
Constr. Build. Mater.
,
255
, p.
119296
.
13.
Wu
,
C.
,
Li
,
J.
, and
Su
,
Y. D.
,
2018
,
Development of Ultra-High Performance Concrete Against Blasts: From Materials to Structures
,
Woodhead Publishing
,
Sawston, UK
.
14.
Lin
,
T. H.
,
Chang
,
C. T.
,
Yang
,
B. H.
,
Hung
,
C. C.
, and
Wen
,
K. W.
,
2023
, “
AI-Powered Shotcrete Robot for Enhancing Structural Integrity Using Ultra-High Performance Concrete and Visual Recognition
,”
Autom. Constr.
,
155
, p.
105038
.
15.
Leone
,
M. F.
, and
Nocerino
,
G.
,
2021
, “
Advanced Modelling and Digital Manufacturing: Parametric Design Tools for the Optimization of UHPFRC (Ultra High-Performance Fiber Reinforced Concrete) Shading Panels
,”
Autom. Constr.
,
126
, p.
103650
.
16.
Wei
,
J.
,
Li
,
J.
,
Liu
,
Z.
,
Wu
,
C.
, and
Liu
,
J.
,
2023
, “
Behaviour of Hybrid Polypropylene and Steel Fibre Reinforced Ultra-High Performance Concrete Beams Against Single and Repeated Impact Loading
,”
Structures
,
55
, pp.
324
337
.
17.
Xu
,
J. P.
,
Wang
,
Z. G.
,
Cheng
,
Y. H.
, and
Wu
,
H.
,
2023
, “
Blast Resistance of Ultra High Performance Concrete-Filled Steel Tube (UHPC-FST) Pier Against Vehicular Bombs
,”
Thin Walled Struct.
,
190
, p.
110990
.
18.
Mirdan
,
D.
, and
Saleh
,
A. R.
,
2022
, “
Flexural Performance of Reinforced Concrete (RC) Beam Strengthened by UHPC Layer
,”
Case Stud. Constr. Mater.
,
17
, p.
e01655
.
19.
Zhang
,
Y.
,
Li
,
X.
,
Zhu
,
Y.
, and
Shao
,
X.
,
2020
, “
Experimental Study on Flexural Behavior of Damaged Reinforced Concrete (RC) Beam Strengthened by Toughness-Improved Ultra-High Performance Concrete (UHPC) Layer
,”
Composites, Part B
,
186
, p.
107834
.
20.
Zhang
,
Y.
,
Zhu
,
Y.
,
Qiu
,
J.
,
Hou
,
C.
, and
Huang
,
J.
,
2023
, “
Impact of Reinforcing Ratio and Fiber Volume on Flexural Hardening Behavior of Steel Reinforced UHPC Beams
,”
Eng. Struct.
,
285
, p.
116067
.
21.
Yu
,
J.
,
Liang
,
S. L.
,
Ren
,
Z. P.
,
Deng
,
Y. J.
, and
Fang
,
Q.
,
2023
, “
Structural Behavior of Steel-Concrete-Steel and Steel-Ultra-High-Performance-Concrete-Steel Composite Panels Subjected to Near-Field Blast Load
,”
J. Constr. Steel Res.
,
210
, p.
108108
.
22.
Liu
,
K.
,
Wu
,
C.
,
Li
,
X.
,
Tao
,
M.
,
Li
,
J.
,
Liu
,
J.
, and
Xu
,
S.
,
2022
, “
Fire Damaged Ultra-High Performance Concrete (UHPC) Under Coupled Axial Static and Impact Loading
,”
Cem. Concr. Compos.
,
126
, p.
104340
.
23.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2028
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
, pp.
505
515
.
24.
Viet
,
N. V.
,
Waheed
,
W.
,
Alazzam
,
A.
, and
Zaki
,
W.
,
2023
, “
Effective Compressive Behavior of Functionally Graded TPMS Titanium Implants With Ingrown Cortical or Trabecular Bone
,”
Compos. Struct.
,
303
, p.
116288
.
25.
Sychov
,
M. M.
,
Lebedev
,
L. A.
,
Dyachenko
,
S. V.
, and
Nefedova
,
L. A.
,
2018
, “
Mechanical Properties of Energy-Absorbing Structures With Triply Periodic Minimal Surface Topology
,”
Acta Astronaut.
,
150
, pp.
81
84
.
26.
Zhu
,
L. Y.
,
Li
,
L.
,
Li
,
Z. A.
,
Shi
,
J. P.
,
Tang
,
W. L.
,
Yang
,
J. Q.
, and
Jiang
,
Q.
,
2019
, “
Design and Biomechanical Characteristics of Porous Meniscal Implant Structures Using Triply Periodic Minimal Surfaces
,”
J. Transl. Med.
,
17
(
1
), p.
89
.
27.
Nguyen-Van
,
V.
,
Tran
,
P.
,
Peng
,
C.
,
Pham
,
L.
,
Zhang
,
G.
, and
Nguyen-Xuan
,
H.
,
2020
, “
Bioinspired Cellular Cementitious Structures for Prefabricated Construction: Hybrid Design & Performance Evaluations
,”
Autom. Constr.
,
119
, p.
103324
.
28.
Lu
,
C.
,
Lesmana
,
L. A.
,
Chen
,
F.
, and
Aziz
,
M.
,
2023
, “
MD-TPMS: Multi-Dimensional Gradient Minimal Surface Generator
,”
Softw. Impacts
,
17
, p.
100527
.
29.
Cusatis
,
G.
,
El-Helou
,
R. G.
,
Lale
,
E.
, and
Moen
,
C. D.
,
2016
, “
Ultra-High Performance Concrete Compression and Fracture Response Parameters for Lattice Discrete Particle Model Simulations
,”
International Interactive Symposium on Ultra-High Performance Concrete
,
Ames, IA
,
July 18–20
, pp.
1
11
.
30.
Yang
,
E.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Downing
,
D.
,
Mazur
,
M.
,
Sarker
,
A.
,
Khorasani
,
A. M.
, et al
,
2019
, “
Effect of Geometry on the Mechanical Properties of Ti-6Al-4V Gyroid Structures Fabricated via SLM: A Numerical Study
,”
Mater. Des.
,
184
, p.
108165
.
31.
Viet
,
N. V.
,
Karathanasopoulos
,
N.
, and
Zaki
,
W.
,
2022
, “
Mechanical Attributes and Wave Propagation Characteristics of TPMS Lattice Structures
,”
Mech. Mater.
,
172
, p.
104363
.
32.
Viet
,
N. V.
,
Al-Rub
,
R. A.
, and
Zaki
,
W.
,
2022
, “
Mechanical Behavior of Shape-Memory Alloy Triply Periodic Minimal Surface Foam Based on Schwarz Primitive
,”
J. Eng. Mech.
,
148
(
9
), pp.
1
12
. doi.org/10.1061/(ASCE)EM.1943-7889.0002130
33.
Viet
,
N. V.
,
Alagha
,
R.
, and
Zaki
,
W.
,
2023
, “
Directional Long-Frequency Phase Wave Propagation Characteristics, Anisotropy, and Effective Yield Surfaces of Architected Spinodal Constructs
,”
Int. J. Solids Struct.
,
264
, p.
112105
.
34.
Meng-Ting
,
H.
,
Bianca
,
E.
,
Yunfei
,
Z.
,
Jens
,
B.
, and
Lorenzo
,
V.
,
2019
, “
The Mechanical Response of Cellular Materials With Spinodal Topologies
,”
J. Mech. Phys. Solids
,
125
, pp.
401
419
.
You do not currently have access to this content.