Abstract

Magnetic domain walls are promising information carriers for developing next-generation high-processing speed spintronic devices. While extensive research has been conducted on field- and current-driven domain wall propagation from fundamental theoretical and practical applications viewpoint, the strain-controlled manipulation of domain walls in magnetostrictive materials with different crystal structures has recently gained significant attention. In this work, we theoretically investigate strain-driven domain wall motion in a transversely isotropic hexagonal magnetostrictive layer, incorporating the influence of nonlinear viscous damping. Our analysis is based on the one-dimensional extended Landau–Lifshitz–Gilbert equation, which captures the combined effects of a tunable magnetic field, spin-polarized current, magnetoelastic and anisotropy fields, and crystal symmetry. By applying the traveling wave method, we derive expressions for key dynamics such as the traveling wave profile, Walker breakdown, domain wall width, and velocity across both steady and precessional regimes. The results show that nonlinear viscous damping significantly influences domain wall motion, altering velocity behavior and expanding the steady propagating regime by shifting the Walker breakdown limit. In addition, the orientation of the magnetic field modulates the threshold and breakdown limits, affecting the range of steady propagation. Also, the numerical illustrations of the obtained analytical results yield a good qualitative agreement with recent observations.

References

1.
Cullity
,
B. D.
, and
Graham
,
C. D.
,
2009
,
Introduction to Magnetic Materials
,
Wiley
,
New York
.
2.
Hubert
,
A.
, and
Schafer
,
R.
,
2008
,
Magnetic Domains: The Analysis of Magnetic Microstructures
,
Springer Science and Business Media
,
Berlin, Heidelberg
.
3.
Allwood
,
D. A.
,
Xiong
,
G.
,
Faulkner
,
C. C.
,
Atkinson
,
D.
,
Petit
,
D.
, and
Cowburn
,
R. P.
,
2005
, “
Magnetic Domain-Wall Logic
,”
Science
,
309
(
5741
), pp.
1688
1692
.
4.
Parkin
,
S. S.
,
Hayashi
,
M.
, and
Thomas
,
L.
,
2008
, “
Magnetic Domain-Wall Racetrack Memory
,”
Science
,
320
(
5873
), pp.
190
194
.
5.
Vopson
,
M. M.
,
2015
, “
Fundamentals of Multiferroic Materials and Their Possible Applications
,”
Crit. Rev. Solid State Mater. Sci.
,
40
(
4
), pp.
223
250
.
6.
Eerenstein
,
W.
,
Mathur
,
N. D.
, and
Scott
,
J. F.
,
2006
, “
Multiferroic and Magnetoelectric Materials
,”
Nature
,
442
(
7104
), pp.
759
765
.
7.
Lei
,
N.
,
Devolder
,
T.
,
Agnus
,
G.
,
Aubert
,
P.
,
Daniel
,
L.
,
Kim
,
J.-V.
,
Zhao
,
W.
, et al
,
2013
, “
Strain-Controlled Magnetic Domain Wall Propagation in Hybrid Piezoelectric/Ferromagnetic Structures
,”
Nat. Commun.
,
4
(
1
), p.
1378
.
8.
Mathurin
,
T.
,
Giordano
,
S.
,
Dusch
,
Y.
,
Tiercelin
,
N.
,
Pernod
,
P.
, and
Preobrazhensky
,
V.
,
2016
, “
Stress-Mediated Magnetoelectric Control of Ferromagnetic Domain Wall Position in Multiferroic Heterostructures
,”
Appl. Phys. Lett.
,
108
(
8
), p.
082401
.
9.
Zighem
,
F.
,
Faurie
,
D.
,
Mercone
,
S.
,
Belmeguenai
,
M.
, and
Haddadi
,
H.
,
2013
, “
Voltage-Induced Strain Control of the Magnetic Anisotropy in a Ni Thin Film on Flexible Substrate
,”
J. Appl. Phys.
,
114
(
7
), p.
073902
.
10.
Dwivedi
,
S.
,
Singh
,
Y. P.
, and
Consolo
,
G.
,
2020
, “
On the Statics and Dynamics of Transverse Domain Walls in Bilayer Piezoelectric-Magnetostrictive Nanostructures
,”
Appl. Math. Model.
,
83
, pp.
13
29
.
11.
Consolo
,
G.
, and
Valenti
,
G.
,
2017
, “
Analytical Solution of the Strain-Controlled Magnetic Domain Wall Motion in Bilayer Piezoelectric/Magnetostrictive Nanostructures
,”
J. Appl. Phys.
,
121
(
4
), p.
043903
.
12.
Maity
,
S.
,
Dolui
,
S.
,
Dwivedi
,
S.
, and
Consolo
,
G.
,
2023
, “
Domain Wall Dynamics in Cubic Magnetostrictive Materials Subject to Rashba Effect and Nonlinear Dissipation
,”
Z. Angew. Math. Phys.
,
74
(
1
), p.
23
.
13.
Consolo
,
G.
,
Federico
,
S.
, and
Valenti
,
G.
,
2021
, “
Strain-Mediated Propagation of Magnetic Domain-Walls in Cubic Magnetostrictive Materials
,”
Ric. Mat.
,
70
(
1
), pp.
81
97
.
14.
Consolo
,
G.
,
Federico
,
S.
,
Valenti
,
G.
,
Pizzini
,
S.
,
Vogel
,
J.
,
Bonfim
,
M.
,
Schuhl
,
A.
, and
Gaudin
,
G.
,
2020
, “
Magnetostriction in Transversely Isotropic Hexagonal Crystals
,”
Phys. Rev. B
,
101
(
1
), p.
014405
.
15.
Hu
,
J.-M.
,
Yang
,
T.
,
Momeni
,
K.
,
Cheng
,
X.
,
Chen
,
L.
,
Lei
,
S.
,
Trolier-McKinstry
,
S.
, et al
,
2016
, “
Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage
,”
Nano Lett.
,
16
(
4
), pp.
2341
2348
.
16.
Weiler
,
M.
,
Brandlmaier
,
A.
,
Geprags
,
S.
,
Althammer
,
M.
,
Opel
,
M.
,
Bihler
,
C.
,
Huebl
,
H.
,
Brandt
,
M. S.
,
Gross
,
R.
, and
Goennenwein
,
S. T. B.
,
2011
, “
Voltage Controlled Inversion of Magnetic Anisotropy in a Ferromagnetic Thin Film at Room Temperature
,”
New J. Phys.
,
11
(
1
), p.
013021
.
17.
Maity
,
S.
,
Halder
,
A.
, and
Dwivedi
,
S.
,
2023
, “
Role of Nonlinear Viscous Dissipation on the Magnetic Domain Wall Motion in Multiferroic Heterostructures
,”
Mech. Adv. Mater. Struct.
,
31
(
28
), pp.
9964
9980
.
18.
Maity
,
S.
,
Dolui
,
S.
, and
Dwivedi
,
S.
,
2024
, “
Strain-Induced Fast Domain Wall Motion in Hybrid Piezoelectric-Magnetostrictive Structures With Rashba and Nonlinear Dissipative Effects
,”
Acta Mech. Sin.
,
40
(
9
), p.
423613
.
19.
Li
,
Z.
, and
Zhang
,
S.
,
2004
, “
Domain-Wall Dynamics Driven by Adiabatic Spin-Transfer Torques
,”
Phys. Rev. B
,
70
(
2
), p.
024417
.
20.
Lu
,
J.
,
2016
, “
Statics and Field-Driven Dynamics of Transverse Domain Walls in Biaxial Nanowires Under Uniform Transverse Magnetic Fields
,”
Phys. Rev. B
,
93
(
22
), p.
224406
.
21.
Schryer
,
N. L.
, and
Walker
,
L. R.
,
1974
, “
The Motion of 180 deg Domain Walls in Uniform DC Magnetic Fields
,”
J. Appl. Phys.
,
45
(
12
), pp.
5406
5421
.
22.
Zhang
,
J. X.
, and
Chen
,
L. Q.
,
2005
, “
Phase-Field Microelasticity Theory and Micromagnetic Simulations of Domain Structures in Giant Magnetostrictive Materials
,”
Acta Mater.
,
53
(
9
), pp.
2845
2855
.
23.
De Ranieri
,
E.
,
Roy
,
P. E.
,
Fang
,
D.
,
Vehsthedt
,
E. K.
,
Irvine
,
A. C.
,
Heiss
,
D.
,
Casiraghi
,
A.
, et al
,
2013
, “
Piezoelectric Control of the Mobility of a Domain Wall Driven by Adiabatic and Non-Adiabatic Torques
,”
Nat. Mater.
,
12
(
9
), pp.
808
814
.
24.
Zhu
,
B.
,
Lo
,
C. C. H.
,
Lee
,
S. J.
, and
Jiles
,
D. C.
,
2001
, “
Micromagnetic Modeling of the Effects of Stress on Magnetic Properties
,”
J. Appl. Phys.
,
89
(
11
), pp.
7009
7011
.
25.
Shepley
,
P. M.
,
Rushforth
,
A. W.
,
Wang
,
M.
,
Burnell
,
G.
, and
Moore
,
T. A.
,
2015
, “
Modification of Perpendicular Magnetic Anisotropy and Domain Wall Velocity in Pt/Co/Pt by Voltage-Induced Strain
,”
Sci. Rep.
,
5
(
1
), p.
7921
.
26.
Clark
,
A. E.
,
Hathaway
,
K. B.
,
Wun-Fogle
,
M.
,
Restorff
,
J. B.
,
Lograsso
,
T. A.
,
Keppens
,
V. M.
,
Petculescu
,
G.
, and
Taylor
,
R. A.
,
2003
, “
Extraordinary Magnetoelasticity and Lattice Softening in bcc Fe-Ga Alloys
,”
J. Appl. Phys.
,
93
(
10
), pp.
8621
8623
.
27.
Wuttig
,
M.
,
Dai
,
L.
, and
Cullen
,
J. R.
,
2002
, “
Elasticity and Magnetoelasticity of Fe-Ga Solid Solutions
,”
Appl. Phys. Lett.
,
80
(
7
), pp.
1135
1137
.
28.
Rafique
,
S.
,
Cullen
,
J. R.
,
Wuttig
,
M.
, and
Cui
,
J.
,
2004
, “
Magnetic Anisotropy of FeGa Alloys
,”
J. Appl. Phys.
,
95
(
11
), pp.
6939
6941
.
29.
Shahu
,
C. K.
,
Dwivedi
,
S.
, and
Dubey
,
S.
,
2023
, “
Dynamics of Curved Domain Walls in Hard Ferromagnets With Nonlinear Dissipative and Inertial Effects
,”
Phys. D: Nonlinear Phenom.
,
448
, p.
133737
.
30.
Consolo
,
G.
, and
Valenti
,
G.
,
2012
, “
Traveling Wave Solutions of the One-Dimensional Extended Landau-Lifshitz-Gilbert Equation With Nonlinear Dry and Viscous Dissipations
,”
Acta Appl. Math.
,
122
, pp.
141
152
.
31.
Mougin
,
A.
,
Cormier
,
M.
,
Adam
,
J. P.
,
Metaxas
,
P. J.
, and
Ferré
,
J.
,
2007
, “
Domain Wall Mobility, Stability and Walker Breakdown in Magnetic Nanowires
,”
Europhys. Lett.
,
78
(
5
), p.
57007
.
32.
Scott
,
M. M.
,
Patton
,
C. E.
,
Kostylev
,
M. P.
, and
Kalinikos
,
B. A.
,
2004
, “
Nonlinear Damping of High-Power Magnetostatic Waves in Yttrium–Iron–Garnet Films
,”
J. Appl. Phys.
,
95
(
11
), pp.
6294
6301
.
33.
Fetisov
,
Y. K.
,
Patton
,
C. E.
, and
Synogach
,
V. T.
,
2006
, “
Envelope Solitons in a Medium With Strong Nonlinear Damping
,”
JETP Lett.
,
83
(
11
), pp.
488
492
.
34.
Gilbert
,
T. L.
,
1955
, “
A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field
,”
Phys. Rev.
,
100
, p.
1243
.
35.
Dwivedi
,
S.
, and
Dubey
,
S.
,
2017
, “
On Dynamics of Current-Induced Static Wall Profiles in Ferromagnetic Nanowires Governed by the Rashba Field
,”
Int. J. Appl. Comput. Math.
,
3
(
1
), pp.
27
42
.
36.
Tiberkevich
,
V.
, and
Slavin
,
A.
,
2007
, “
Nonlinear Phenomenological Model of Magnetic Dissipation for Large Precession Angles: Generalization of the Gilbert Model
,”
Phys. Rev. B
,
75
(
1
), p.
014440
.
37.
Consolo
,
G.
,
Currò
,
C.
, and
Valenti
,
G.
,
2014
, “
Curved Domain Walls Dynamics Driven by Magnetic Field and Electric Current in Hard Ferromagnets
,”
Appl. Math. Model.
,
38
(
3
), pp.
1001
1010
.
38.
Shahu
,
C. K.
,
Dwivedi
,
S.
, and
Dubey
,
S.
,
2022
, “
Curved Domain Walls in the Ferromagnetic Nanostructures With Rashba and Nonlinear Dissipative Effects
,”
Appl. Math. Comput.
,
420
, p.
126894
.
39.
Shahu
,
C. K.
,
Dubey
,
S.
, and
Dwivedi
,
S.
,
2023
, “
Domain Wall Motion in Multiferroic Nanostructures Under the Influence of Spin-Orbit Torque and Nonlinear Dissipative Effect
,”
Mech. Adv. Mater. Struct.
,
30
(
24
), pp.
5047
5057
.
40.
Dolui
,
S.
,
Maity
,
S.
, and
Dwivedi
,
S.
,
2024
, “
Strain-Induced Ultrafast Magnetization Dynamics in Cubic Magnetostrictive Materials With Inertial and Nonlinear Dissipative Effects
,”
Z. Angew. Math. Phys.
,
75
(
4
), p.
149
.
41.
Moon
,
K. W.
,
Kim
,
D. H.
,
Je
,
S. G.
,
Chun
,
B. S.
,
Kim
,
W.
,
Qiu
,
Z. Q.
,
Choe
,
S. B.
, and
Hwang
,
C.
,
2016
, “
Skyrmion Motion Driven by Oscillating Magnetic Field
,”
Sci. Rep.
,
6
(
1
), p.
20360
.
42.
Moon
,
K. W.
,
Kim
,
D. H.
,
Kim
,
C.
,
Kim
,
D. Y.
,
Choe
,
S. B.
, and
Hwang
,
C.
,
2017
, “
Domain Wall Motion Driven by an Oscillating Magnetic Field
,”
J. Phys. D: Appl. Phys.
,
50
(
12
), p.
125003
.
43.
Neeraj
,
K.
,
Pancaldi
,
M.
,
Scalera
,
V.
,
Perna
,
S.
,
d’Aquino
,
M.
,
Serpico
,
C.
, and
Bonetti
,
S.
,
2022
, “
Magnetization Switching in the Inertial Regime
,”
Phys. Rev. B
,
105
(
5
), p.
054415
.
44.
Olive
,
E.
,
Lansac
,
Y.
,
Meyer
,
M.
,
Hayoun
,
M.
, and
Wegrowe
,
J. E.
,
2015
, “
Deviation From the Landau-Lifshitz-Gilbert Equation in the Inertial Regime of the Magnetization
,”
J. Appl. Phys.
,
117
(
21
), p.
213904
.
45.
Dolui
,
S.
,
Maity
,
S.
,
Dwivedi
,
S.
, and
Consolo
,
G.
,
2024
, “
Depinning of Domain Walls in a Notched Ferromagnetic Nanostrip: Role of Inertial and Nonlinear Damping Effects
,”
Phys. Scr.
,
99
(
9
), p.
095237
.
46.
Agarwal
,
S.
,
Carbou
,
G.
,
Labbè
,
S.
, and
Prieur
,
C.
,
2011
, “
Control of a Network of Magnetic Ellipsoidal Samples
,”
Math. Control Relat. Fields
,
1
(
2
), pp.
129
147
.
47.
Osborn
,
J. A.
,
1945
, “
Demagnetizing Factors of the General Ellipsoid
,”
Phys. Rev.
,
67
(
11–12
), pp.
351
357
.
48.
Carbou
,
G.
,
2010
, “
Stability of Static Walls for a Three-Dimensional Model of Ferromagnetic Material
,”
J. Math. Appl.
,
93
(
2
), pp.
183
203
.
49.
Dwivedi
,
S.
, and
Dubey
,
S.
,
2017
, “
On the Stability of Steady-States of a Two-Dimensional System of Ferromagnetic Nanowires
,”
J. Appl. Anal.
,
23
(
2
), pp.
89
100
.
50.
Shu
,
Y. C.
,
Lin
,
M. P.
, and
Wu
,
K. C.
,
2004
, “
Micromagnetic Modeling of Magnetostrictive Materials Under Intrinsic Stress
,”
Mech. Mater.
,
36
(
10
), pp.
975
997
.
51.
Liang
,
C. Y.
,
Keller
,
S. M.
,
Sepulveda
,
A. E.
,
Bur
,
A.
,
Sun
,
W. Y.
,
Wetzlar
,
K.
, and
Carman
,
G. P.
,
2014
, “
Modeling of Magnetoelastic Nanostructures With a Fully Coupled Mechanical-Micromagnetic Model
,”
Nanotechnology
,
25
(
43
), p.
435701
.
52.
Mason
,
W. P.
,
1954
, “
Derivation of Magnetostriction and Anisotropic Energies for Hexagonal, Tetragonal, and Orthorhombic Crystals
,”
Phys. Rev.
,
96
(
2
), pp.
302
310
.
53.
Bozorth
,
R. M.
,
1954
, “
Magnetostriction and Crystal Anisotropy of Single Crystals of Hexagonal Cobalt
,”
Phys. Rev.
,
96
(
2
), pp.
311
316
.
54.
Paes
,
V. Z. C.
, and
Mosca
,
D. H.
,
2012
, “
Field-Induced Lattice Deformation Contribution to the Magnetic Anisotropy
,”
J. Appl. Phys.
,
112
(
10
), p.
103920
.
55.
Eyrich
,
C.
,
Huttema
,
W.
,
Arora
,
M.
,
Montoya
,
E.
,
Rashidi
,
F.
,
Burrowes
,
C.
,
Kardasz
,
B.
, et al
,
2012
, “
Exchange Stiffness in Thin Film Co Alloys
,”
J. Appl. Phys.
,
111
(
7
), p.
07C919
.
56.
Oogane
,
M.
,
Wakitani
,
T.
,
Yakata
,
S.
,
Yilgin
,
R.
,
Ando
,
Y.
,
Sakuma
,
A.
, and
Miyazaki
,
T.
,
2006
, “
Magnetic Damping in Ferromagnetic Thin Films
,”
Jpn. J. Appl. Phys.
,
45
(
5R
), p.
3889
.
57.
Nakamura
,
N.
,
Ogi
,
H.
,
Hirao
,
M.
, and
Ono
,
T.
,
2005
, “
Elastic Constants and Magnetic Anisotropy of Co/Pt Superlattice Thin Films
,”
Appl. Phys. Lett.
,
86
(
11
), p.
111918
.
58.
Haghgoo
,
S.
,
Cubukcu
,
M.
,
Von Bardeleben
,
H. J.
,
Thevenard
,
L.
,
Lemaître
,
A.
, and
Gourdon
,
C.
,
2010
, “
Exchange Constant and Domain Wall Width in (Ga, Mn)(As, P) Films With Self-Organization of Magnetic Domains
,”
Phys. Rev. B
,
82
(
4
), p.
041301
.
59.
Miron
,
I. M.
,
Moore
,
T.
,
Szambolics
,
H.
,
Buda-Prejbeanu
,
L. D.
,
Auffret
,
S.
,
Rodmacq
,
B.
,
Pizzini
,
S.
, et al
,
2011
, “
Fast Current-Induced Domain-Wall Motion Controlled by the Rashba Effect
,”
Nat. Mater.
,
10
(
6
), pp.
419
423
.
You do not currently have access to this content.