Graphical Abstract Figure

The schematic illustrations of the oblique compression model between two elastic hollow cylinders and the corresponding contact behaviors

Graphical Abstract Figure

The schematic illustrations of the oblique compression model between two elastic hollow cylinders and the corresponding contact behaviors

Close modal

Abstract

Bundled elastic hollow cylinders are one of the most widely adopted configurations in biomaterials and architected materials. A fundamental problem in the behavior of the bundled elastic hollow cylinders is that of the oblique compression of two hollow cylinders. In this paper, we develop the analytical solutions by decoupling this problem into normal and tangential behaviors. The normal components present the Hertzian contacts, and the similar formulas corresponding to shear are derived based on the considerations of incremental displacement changes. Then, we introduce the methods to determine the unknown coefficients and to improve the accuracy. The numerical studies demonstrate the feasibility of our method, and the parametric analysis clarifies the effects of the material properties, the geometric parameters, and the oblique angle on the contact responses. Finally, we indicate how this method can be applied to more general practice applications.

References

1.
Fanton
,
A. C.
,
Bouda
,
M.
, and
Brodersen
,
C.
,
2024
, “
Xylem-Dwelling Pathogen Unaffected by Local Xylem Vessel Network Properties in Grapevines (Vitis Spp.)
,”
Ann. Bot.
,
133
(
4
), pp.
521
532
.
2.
Jacobsen
,
A. L.
,
Venturas
,
M. D.
,
Hacke
,
U. G.
, and
Pratt
,
R. B.
,
2024
, “
Sap Flow Through Partially Embolized Xylem Vessel Networks
,”
Plant Cell Environ.
,
47
(
9
), pp.
3375
3392
.
3.
Kohl
,
P. A.
,
Song
,
C.
,
Fletcher
,
B. J.
,
Best
,
R. L.
,
Tchounwou
,
C.
,
Garcia Arceo
,
X.
,
Chung
,
P. J.
, et al
,
2024
, “
Complexes of Tubulin Oligomers and Tau Form a Viscoelastic Intervening Network Cross-Bridging Microtubules Into Bundles
,”
Nat. Commun.
,
15
(
1
), p.
2362
.
4.
Lemma
,
B.
,
Lemma
,
L. M.
,
Ems-McClung
,
S. C.
,
Walczak
,
C. E.
,
Dogic
,
Z.
, and
Needleman
,
D. J.
,
2024
, “
Structure and Dynamics of Motor-Driven Microtubule Bundles
,”
Soft Matter
,
20
(
29
), pp.
5715
5723
.
5.
Zhang
,
Y.
,
Yang
,
D.
,
Wang
,
P.
, and
Ke
,
Y.
,
2023
, “
Building Large DNA Bundles Via Controlled Hierarchical Assembly of DNA Tubes
,”
ACS Nano
,
17
(
11
), pp.
10486
10495
.
6.
Sang
,
L.
,
Han
,
S.
,
Peng
,
X.
,
Jian
,
X.
, and
Wang
,
J.
,
2019
, “
Development of 3D-Printed Basalt Fiber Reinforced Thermoplastic Honeycombs With Enhanced Compressive Mechanical Properties
,”
Compos. Part A
,
125
, p.
105518
.
7.
Zhang
,
J.
,
Shi
,
B.
, and
Shen
,
Y.
,
2023
, “
In-Plane Crushing Response and Energy Absorption of Two Different Arranged Circular Honeycombs
,”
Mater. Res. Expr.
,
10
(
9
), p.
095801
.
8.
Galuppi
,
L.
,
Pasquali
,
M.
, and
Royer-Carfagni
,
G.
,
2019
, “
The Effective Tensile and Bending Stiffness of Nanotube Fibers
,”
Int. J. Mech. Sci.
,
163
, p.
105089
.
9.
Xu
,
Q.
,
Ouyang
,
H.
,
Lin
,
Y.
,
Ye
,
M.
,
Wang
,
X.
,
Sun
,
L.
,
Chen
,
T.
, and
Ma
,
L.
,
2023
, “
Welding Model for a Carbon Nanotube Bundle With Staggered Electrodes: Implications for Conductivity With Joule Heating
,”
ACS Appl. Nano Mater.
,
6
(
15
), pp.
14488
14497
.
10.
Sufian
,
M. A.
,
Baleine
,
E.
,
Geldmeier
,
J.
,
Alhalemi
,
A.
,
Antonio-Lopez
,
J. E.
,
Correa
,
R. A.
, and
Schülzgen
,
A.
,
2024
, “
Light Transmission Through a Hollow Core Fiber Bundle
,”
IEEE J. Sel. Top. Quantum Electron.
,
30
(
6
: Advances and Applications), pp.
1
8
.
11.
Chen
,
B.
,
Zhou
,
K.
,
Shao
,
J.
,
Zhao
,
X.
,
Xu
,
B.
,
Zhu
,
J.
,
Xue
,
B.
, et al
,
2024
, “
A Low-Loss Hollow-Core Waveguide Bundle for Terahertz Imaging Under a Cryogenic Environment
,”
ACS Photonics
,
11
(
8
), pp.
3068
3078
.
12.
Zhang
,
Y.
,
Ji
,
J. C.
,
Ren
,
Z.
,
Ni
,
Q.
,
Gu
,
F.
,
Feng
,
K.
,
Yu
,
K.
,
Ge
,
J.
,
Lei
,
Z.
, and
Liu
,
Z.
,
2023
, “
Digital Twin-Driven Partial Domain Adaptation Network for Intelligent Fault Diagnosis of Rolling Bearing
,”
Reliab. Eng. Syst. Saf.
,
234
, p.
109186
.
13.
Dai
,
P.
,
Liang
,
X.
,
Lin
,
X.
,
Wang
,
F.
, and
Wang
,
J.
,
2023
, “
Investigation on Stability and Slip Characteristic of the Cage in Cylindrical Roller Bearing With Localized Failure on Raceways
,”
Mech. Syst. Signal Process.
,
199
, p.
110469
.
14.
Yang
,
Y.
,
Wang
,
C.
,
Zhang
,
D.
,
Qiu
,
S.
,
Su
,
G.
, and
Tian
,
W.
,
2023
, “
Heat Transfer Evaluation of Liquid Lead-Bismuth Eutectic Cross Flow Tube Bundle: Experimental Part
,”
Int. J. Therm. Sci.
,
193
, p.
108527
.
15.
Ji
,
J.
,
Lu
,
Y.
,
Shi
,
B.
,
Gao
,
R.
, and
Chen
,
Q.
,
2023
, “
Numerical Research on Vibration and Heat Transfer Performance of a Conical Spiral Elastic Bundle Heat Exchanger With Baffles
,”
Appl. Therm. Eng.
,
232
, p.
121036
.
16.
Chung
,
J.
, and
Waas
,
A. M.
,
2009
, “
The Micropolar Elasticity Constants of Circular Cell Honeycombs
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
465
(
2101
), pp.
25
39
.
17.
Lin
,
T.-C.
,
Chen
,
T.-J.
, and
Huang
,
J.-S.
,
2012
, “
In-Plane Elastic Constants and Strengths of Circular Cell Honeycombs
,”
Compos. Sci. Technol.
,
72
(
12
), pp.
1380
1386
.
18.
Chung
,
J.
, and
Waas
,
A. M.
,
2000
, “
The Inplane Elastic Properties of Circular Cell and Elliptical Cell Honeycombs
,”
Acta Mech.
,
144
(
1–2
), pp.
29
42
.
19.
Cernescu
,
A.
,
Romanoff
,
J.
,
Remes
,
H.
,
Faur
,
N.
, and
Jelovica
,
J.
,
2014
, “
Equivalent Mechanical Properties for Cylindrical Cell Honeycomb Core Structure
,”
Compos. Struct.
,
108
(
1
), pp.
866
875
.
20.
Gotkhindi
,
T. P.
, and
Simha
,
K. R. Y.
,
2014
, “
Transverse Orthotropic Elastic Moduli of Bundled Coated Thin Elliptical Tubes
,”
Compos. Struct.
,
118
(
1
), pp.
178
199
.
21.
Hu
,
L. L.
,
Cai
,
D. Y.
,
Wu
,
G. P.
,
He
,
X. L.
, and
Yu
,
T. X.
,
2017
, “
Influence of Internal Pressure on the Out-of-Plane Dynamic Behavior of Circular-Celled Honeycombs
,”
Int. J. Impact Eng.
,
104
, pp.
64
74
.
22.
Papka
,
S. D.
, and
Kyriakides
,
S.
,
1998
, “
In-Plane Crushing of a Polycarbonate Honeycomb
,”
Int. J. Solids Struct.
,
35
(
3–4
), pp.
239
267
.
23.
Combescure
,
C.
,
Elliott
,
R. S.
, and
Triantafyllidis
,
N.
,
2020
, “
Deformation Patterns and Their Stability in Finitely Strained Circular Cell Honeycombs
,”
J. Mech. Phys. Solids
,
142
, p.
103976
.
24.
Hu
,
L. L.
,
He
,
X. L.
,
Wu
,
G. P.
, and
Yu
,
T. X.
,
2015
, “
Dynamic Crushing of the Circular-Celled Honeycombs Under Out-of-Plane Impact
,”
Int. J. Impact Eng.
,
75
, pp.
150
161
.
25.
Gotkhindi
,
T. P.
, and
Simha
,
K. R. Y.
,
2013
, “
Transverse Elastic Response of Bundled Coated Cylinders
,”
Int. J. Mech. Sci.
,
76
, pp.
70
85
.
26.
Gotkhindi
,
T. P.
, and
Simha
,
K. R. Y.
,
2015
, “
In-Plane Elastic Responses of Circular Cell Honeycombs and Bundled Circular Tubes in a Diamond Array Structure
,”
Compos. Struct.
,
134
(
1–2
), pp.
311
330
.
27.
Gotkhindi
,
T. P.
, and
Simha
,
K. R. Y.
,
2015
, “
In-Plane Effective Shear Modulus of Generalized Circular Honeycomb Structures and Bundled Tubes in a Diamond Array Structure
,”
Int. J. Mech. Sci.
,
101–102
, pp.
292
308
.
28.
Qi
,
G.
,
Liu
,
C.
,
Feng
,
K.
,
Ma
,
L.
, and
Schröder
,
K.-U.
,
2023
, “
Analytical Solutions of Stress Distribution Within a Hollow Cylinder Under Contact Interactions
,”
Int. J. Mech. Sci.
,
239
, p.
107897
.
29.
Avci
,
A.
,
Bulu
,
A.
, and
Yapici
,
A.
,
2006
, “
Axisymmetric Smooth Contact for an Elastic Isotropic Infinite Hollow Cylinder Compressed by an Outer Rigid Ring With Circular Profile
,”
Acta Mech. Sin.
,
22
(
1
), pp.
46
53
.
30.
Oden
,
J. T.
, and
Lin
,
T. L.
,
1986
, “
On the General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder
,”
Comput. Meth. Appl. Mech. Eng.
,
57
(
3
), pp.
297
367
.
31.
Gasmi
,
A.
,
Joseph
,
P. F.
,
Rhyne
,
T. B.
, and
Cron
,
S. M.
,
2011
, “
Closed-Form Solution of a Shear Deformable, Extensional Ring in Contact Between Two Rigid Surfaces
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
843
853
.
32.
Xie
,
F.
, and
Liu
,
Z.
,
2011
, “
Study on Single-Cell Contact Model of Thick-Walled Cellular Solid
,”
Int. J. Mech. Sci.
,
53
(
10
), pp.
926
933
.
33.
Bao
,
R. H.
, and
Yu
,
T. X.
,
2015
, “
Impact and Rebound of an Elastic–Plastic Ring on a Rigid Target
,”
Int. J. Mech. Sci.
,
91
, pp.
55
63
.
34.
Morimoto
,
T.
, and
Sato
,
K.
,
2023
, “
Contact Responses Between a Semi-Circular Ring and a Rigid Plane
,”
Int. J. Solids Struct.
,
264
, p.
112122
.
35.
Jiang
,
Z.
,
Jiang
,
C.
,
Liu
,
J.
,
Chen
,
X.
,
Shen
,
L.
, and
Gao
,
R.
,
2024
, “
Application of a Novel Cylindrical Bonnet Tool Polishing Approach to Finishing of Bearing Ring Internal Surface
,”
J. Manuf. Processes
,
117
, pp.
14
23
.
36.
Liu
,
X.
,
Qiu
,
L.
, and
Chen
,
X.
,
2022
, “
Mechanical Properties of Coupled Bending and Contact to Hollow Cylindrical Roller Contacts
,”
Tribol. Trans.
,
65
(
6
), pp.
963
976
.
37.
Liu
,
S.
,
Peyronnel
,
A.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
,
2005
, “
An Extension of the Hertz Theory for 2D Coated Components
,”
Tribol. Lett.
,
18
(
4
), pp.
505
511
.
38.
Cao
,
H.
,
Niu
,
L.
,
Xi
,
S.
, and
Chen
,
X.
,
2018
, “
Mechanical Model Development of Rolling Bearing-Rotor Systems: A Review
,”
Mech. Syst. Signal Process.
,
102
, pp.
37
58
.
39.
Block
,
J. M.
, and
Keer
,
L. M.
,
2007
, “
Partial Plane Contact of an Elastic Curved Beam Pressed by a Flat Surface
,”
ASME J. Tribol.
,
129
(
1
), pp.
60
64
.
40.
Bai
,
G.
,
Sun
,
W.
,
Tian
,
G.
,
Sun
,
Q.
, and
Sun
,
L.
,
2024
, “
Efficient Strain Analysis of Radially Loaded Hollow Cylindrical Roller Using Symbolic Regression
,”
IEEE Trans. Instrum. Meas.
,
73
, pp.
1
12
.
41.
Fu
,
P.
,
Zhao
,
J.
,
Zhang
,
X.
,
Miao
,
H.
,
Wen
,
Z.
,
Wang
,
P.
,
Kang
,
G.
, and
Kan
,
Q.
,
2024
, “
Elasto-Plastic Partial Slip Contact Modeling of Graded Layers
,”
Int. J. Mech. Sci.
,
264
, p.
108823
.
42.
Liu
,
Z.
, and
Ju
,
J.
,
2024
, “
Developing a Scalable Analytical Framework for Predicting the Contact Behavior of Elastic Rings Against Rigid Surfaces
,”
Int. J. Solids Struct.
,
301
, p.
112967
.
43.
Jaeger
,
J.
,
1994
, “
Oblique Impact of Similar Bodies With Circular Contact
,”
Acta Mech.
,
107
(
1–4
), pp.
101
115
.
44.
Brake
,
M. R. W.
,
2015
, “
An Analytical Elastic Plastic Contact Model With Strain Hardening and Frictional Effects for Normal and Oblique Impacts
,”
Int. J. Solids Struct.
,
62
, pp.
104
123
.
45.
Vasiliev
,
V. V.
,
Lurie
,
S. A.
, and
Salov
,
V. A.
,
2021
, “
On the Flamant Problem for a Half-Plane Loaded With a Concentrated Force
,”
Acta Mech.
,
232
(
5
), pp.
1761
1771
.
46.
Zhou
,
S.-S.
, and
Gao
,
X.-L.
,
2015
, “
Solutions of the Generalized Half-Plane and Half-Space Cerruti Problems With Surface Effects
,”
Z. Angew. Math. Phys.
,
66
(
3
), pp.
1125
1142
.
47.
Walton
,
K.
,
1978
, “
The Oblique Compression of Two Elastic Spheres
,”
J. Mech. Phys. Solids
,
26
(
3
), pp.
139
150
.
48.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
49.
Aleshin
,
V.
, and
Van Den Abeele
,
K.
,
2012
, “
Hertz–Mindlin Problem for Arbitrary Oblique 2D Loading: General Solution by Memory Diagrams
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
14
36
.
50.
Aleshin
,
V.
,
Bou Matar
,
O.
, and
Van Den Abeele
,
K.
,
2015
, “
Method of Memory Diagrams for Mechanical Frictional Contacts Subject to Arbitrary 2D Loading
,”
Int. J. Solids Struct.
,
60–61
, pp.
84
95
.
51.
Zhang
,
X.
,
Zheng
,
X.
,
Han
,
Y.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Yan
,
L.
,
2024
, “
Failure Mechanisms and Process Defects of 3D-Printed Continuous Carbon Fiber-Reinforced Composite Circular Honeycomb Structures With Different Stacking Directions
,”
Aerosp. Sci. Technol.
,
148
, p.
109075
.
52.
Orth
,
A.
,
Ploschner
,
M.
,
Wilson
,
E. R.
,
Maksymov
,
I. S.
, and
Gibson
,
B. C.
,
2019
, “
Optical Fiber Bundles: Ultra-Slim Light Field Imaging Probes
,”
Sci. Adv.
,
5
(
4
), p.
eaav1555
.
You do not currently have access to this content.