This is a review article on the mechanics of small-amplitude motions superposed on finite biasing or initial fields in an electroelastic body. It begins with a summary of the nonlinear theory of electroelasticity, which is the theoretical foundation for the theory of small fields superposed on a bias. This theory, obtained by different approaches, and the development of structural theories for electroelastic beams, plates, and shells under biasing fields are discussed. Applications of these theories for small fields superposed on biasing fields in the buckling of thin electroelastic structures, frequency stability of piezoelectric resonators for time-keeping and telecommunication, acoustic wave sensors based on frequency shifts due to biasing fields, characterization of nonlinear electroelastic materials by propagation of small-amplitude waves in electroelastic bodies under biasing fields, and electrostrictive ceramics which operate under a biasing electric field are reviewed. A summary of some current and possible future research topics in this field is given. The article contains 166 references.

1.
Dokmeci
MC
(
1988
),
Recent progress in the dynamic applications of piezoelectric crystals
,
Shock Vib. Dig.
20
,
3
20
.
2.
Wang
J
and
Yang
JS
(
2000
),
Higher-order theories of piezoelectric plates and applications
,
Ann. Glaciol.
53
,
87
99
.
3.
Rao
SS
and
Sunar
M
(
1994
),
Piezoelectricity and its use in disturbance sensing and control of flexible structutes: a survey
,
Appl. Mech. Rev.
47
,
113
123
.
4.
Sunar
M
and
Rao
SS
(
1999
),
Recent advances in sensing and control of flexible structures via piezoelectric materials technology
,
Appl. Mech. Rev.
52
,
1
15
.
5.
Chee
CYK
,
Tong
L
, and
Steven
GP
(
1998
),
A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures
,
J. Intell. Mater. Syst. Struct.
9
,
3
19
.
6.
Tani
J
,
Takagi
T
, and
Qiu
J
(
1998
),
Intelligent material systems: Application of functional materials
,
Ecologic. Econ.
51
,
505
521
.
7.
Toupin
RA
(
1956
),
The elastic dielectric
,
J. Rational Mech. Anal.
5
,
849
915
.
8.
Eringen
AC
(
1963
),
On the foundations of electroelastostatics
,
Int. J. Eng. Sci.
1
,
127
153
.
9.
Tiersten
HF
(
1971
),
On the nonlinear equations of thermo-electroelasticity
,
Int. J. Eng. Sci.
9
,
587
604
.
10.
Nelson
DF
(
1978
),
Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals
,
J. Acoust. Soc. Am.
63
,
1738
1748
.
11.
Eringen AC and Maugin GA (1990), Electrodynamics of Continua, Vol I, Springer, New York.
12.
Tiersten
HF
(
1981
),
Electroelastic interactions and the piezoelectric equations
,
J. Acoust. Soc. Am.
70
,
1567
1576
.
13.
Smith
GF
,
Smith
MM
, and
Rivlin
RS
(
1963
),
Integrity bases for a symmetric tensor and a vector-the crystal classes
,
Arch. Ration. Mech. Anal.
12
,
93
133
.
14.
Spencer AJM (1971), Theory of invariants, Continuum Physics, Vol I, AC Eringen (ed), Academic Press, New York, 292–307.
15.
Maugin
GA
, and
Epstein
M
(
1991
),
The electroelastic energy-momentum tensor
,
Proc. R. Soc. London
433A
,
299
312
.
16.
Yang
JS
and
Batra
RC
(
1995
),
Mixed variational principles in nonlinear electroelasticity
,
Int. J. Non-Linear Mech.
30
,
719
725
.
17.
Verma
PDS
and
Chaudhry
HR
(
1966
),
Small deformation superposed on large deformation of an elastic dielectric
,
Int. J. Eng. Sci.
4
,
235
247
.
18.
JC
Baumhauer
and
HF
Tiersten
(
1973
),
Nonlinear electroelastic equations for small fields superposed on a bias
,
J. Acoust. Soc. Am.
54
,
1017
1034
.
19.
Tiersten
HF
(
1995
),
On the accurate description of piezoelectric resonators subject to biasing deformations
,
Int. J. Eng. Sci.
33
,
2239
2259
.
20.
Iesan D (1989), Prestressed Bodies, Longman Scientific and Technical, Essex, UK, Chapter 7.
21.
Dokmeci
MC
(
1990
),
Shell theory for vibrations of piezoceramics under a bias
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
369
385
.
22.
Chen
CQ
,
Tian
XG
, and
Shen
YP
(
1998
),
Incremental variational equations for finitely deformed piezoelectric media
,
Acta Mechanica Solida Sinic
19
,
228
238
.
23.
Yang
JS
, Variational derivation of the equations for small fields superposed on finite biasing fields in an electroelastic body, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, (accepted for publication).
24.
Hu
YT
,
Yang
JS
and
Jiang
Q
(
2002
),
Characterization of electroelastic beams under biasing fields with applications in buckling analysis
,
Arch. Appl. Mech.
72
,
439
450
.
25.
Hu YT, Jiang Q, Kosinski JA, Pastore Jr RA, Yang JS, and Zhang X (2001), Two-dimensional equations for electroelastic plates under biasing fields, Proc IEEE Int Frequency Control Symp, 584–591.
26.
Hu
YT
,
Yang
JS
, and
Jiang
Q
(
2002
),
A model of electroelastic plates under biasing fields with applications in buckling analysis
,
Int. J. Solids Struct.
39
,
2619
2642
.
27.
Hu
YT
,
Chen
C
,
Li
G
,
Yang
JS
, and
Jiang
Q
(
2002
),
Basic curvilinear coordinate equations of electroelastic plates under biasing fields with applications in buckling analysis
,
Acta Mechanica Solida Sinica
15
,
189
200
.
28.
Dokmeci MC (1985), Vibration of piezoelectric disks under initial stresses, Proc 39th Annual Symp on Frequency Control, 431–435.
29.
Hu
YT
,
Yang
JS
, and
Jiang
Q
(
2002
),
On modeling of extension and flexure response of electroelastic shells under biasing fields
,
Acta Mech.
156
,
163
178
.
30.
Dokmeci MC (1990), Dynamics of piezoelectric laminae under a bias, Proc 44th Annual Symp on Frequency Control, 394–405.
31.
Dulmet B and Bourquin R (1994), Applications of Lagrangian effective material constants to the study of the thermal behavior of SAW propagation in piezoelectric crystals, Proc IEEE Ultrasonics Symp, 331–335.
32.
Dulmet
B
and
Bourquin
R
(
2001
),
Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals–I: Theory
,
J. Acoust. Soc. Am.
110
,
1792
1799
.
33.
Dulmet
B
,
Bourquin
R
,
Bigler
E
, and
Ballandras
S
(
2001
),
Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals–II: Applications and numerical values for quartz
,
J. Acoust. Soc. Am.
110
,
1800
1807
.
34.
Yong Y-K and Wei W (2000), Lagrangean temperature coefficients of the piezoelectric stress constants and dielectric permittivity of quartz, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 364–372.
35.
Yong Y-K and Wei W (2001), Lagrangean versus classical formulation of frequency-temperature problems in quartz resonators, Proc IEEE Int Frequency Control Symp and PDA Exhibition, 828–837.
36.
Iesan
D
(
1988
),
Initially stressed thermoelastic dielectrics
,
J. Therm. Stresses
11
,
421
441
.
37.
Yang
JS
(
2003
),
Equations for small fields superposed on finite biasing fields in a thermoelectroelastic body
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
187
192
.
38.
Wang
ZK
and
Shang
FL
(
1997
),
Cylindrical buckling of piezoelectric laminated plates
,
Acta Mechanica Solida Sinica
18
,
101
108
.
39.
Shang
FL
,
Wang
ZK
and
Li
ZH
(
1997
),
Exact analysis of thermal buckling of piezoelectric laminated plates
,
Acta Mechanica Solida Sinica
18
,
1
10
.
40.
Tian
XG
,
Shen
YP
, and
Gao
JX
(
2000
),
Buckling and post-buckling analysis of piezoelectric plates using finite element method
,
Acta Mechanica Solida Sinica
21
,
123
130
.
41.
Cheng
C-Q
, and
Shen
Y-P
(
1997
),
Stability analysis of piezoelectric circular cylindrical shells
,
ASME J. Appl. Mech.
64
,
847
852
.
42.
Yang
JS
(
1998
),
Buckling of a piezoelectric plate
,
Int. J. Appl. Electromagn. Mech.
9
,
399
408
.
43.
Yang
JS
(
1998
),
Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications
,
Int. J. Appl. Electromagn. Mech.
9
,
409
420
.
44.
Hu YT, Yang JS, and Jiang Q (2001), Buckling of electroelastic plates, Applied Electromagnetics and Mechanics, T Takagi and M Uesaka (eds), JSAEM, 31–32.
45.
Hu YT, Yang JS, and Jiang Q (2002), Electroelastic structures under biasing fields, Proc of the 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 596–600.
46.
Yang JS and Hu YT (2003), Electroelastic bodies under biasing fields, Mechanics of Electromagnetic Solids, JS Yang and GA Maugin (eds), Kluwer, 17–44, in press.
47.
Benes E, Groschl M, Seifert F, and Pohl A (1997), Comparison between BAW and SAW sensor principles, Proc IEEE Int Frequency Control Symp, 5–20.
48.
Deresiewicz H, Bieniek MP, and DiMaggio FL (ed) (1989), The Collected Papers of Raymond D. Mindlin, Vols I and II, Springer, New York.
49.
Tiersten
HF
(
1978
),
Perturbation theory for linear electroelastic equations for small fields superposed on a bias
,
J. Acoust. Soc. Am.
64
,
832
837
.
50.
Sinha
BK
and
Locke
S
(
1987
),
Acceleration and vibration sensitivity of SAW devices
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
34
,
29
38
.
51.
Shick
DV
,
Zhou
YS
, and
Tiersten
HF
(
1989
),
An analysis of the in-plane acceleration sensitivity of quartz surface-wave resonators rigidly supported along the edges
,
J. Appl. Phys.
65
,
35
40
.
52.
Tiersten
HF
and
Shick
DV
(
1988
),
On the normal acceleration sensitivity of ST-cut quartz surface wave resonators supported along rectangular edges
,
J. Appl. Phys.
64
,
4334
4341
.
53.
Tiersten
HF
and
Shick
DV
(
1990
),
On the in-plane acceleration sensitivity of ST-cut quartz surface-wave resonators with interior rectangular supports
,
J. Appl. Phys.
67
,
2554
2566
.
54.
Lee
PCY
and
Wu
K-M
(
1978
),
The influence of support-configuration on the acceleration sensitivity of quartz resonator plates
,
IEEE Trans. Sonics Ultrason.
25
,
220
223
.
55.
Lee
PCY
, and
Wu
K-M
(
1984
),
In-plane accelerations and forces on frequency changes in doubly rotated quartz plates
,
J. Acoust. Soc. Am.
75
,
1105
1117
.
56.
Lee
PCY
and
Guo
X
(
1991
),
Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
38
,
358
365
.
57.
Tiersten
HF
and
Shick
DV
(
1990
),
On the normal acceleration sensitivity of contoured quartz resonators rigidly supported along rectangular edges
,
J. Appl. Phys.
67
,
60
67
.
58.
Tiersten
HF
and
Zhou
YS
(
1991
),
On the in-plane acceleration sensitivity of contoured quartz resonators supported along rectangular edges
,
J. Appl. Phys.
70
,
4708
4714
.
59.
Zhou
YS
and
Tiersten
HF
(
1991
),
On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports
,
J. Appl. Phys.
69
,
2862
2870
.
60.
Filler
RL
(
1988
),
The acceleration sensitivity of quartz crystal oscillators: a review
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
297
305
.
61.
Kosinski
JA
and
Pastore
Jr.
RA
(
2001
),
Theory and design of piezoelectric resonators immune to acceleration: Present state of the art
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1426
1437
.
62.
Sinha
BK
and
Tiersten
HF
(
1979
),
On the influence of a flexural biasing state on the velocity of piezoelectric surface waves
,
Wave Motion
1
,
37
51
.
63.
Sinha
BK
,
Tanski
WJ
,
Lukaszek
T
, and
Ballato
A
(
1985
),
Influence of biasing stresses on the propagation of surface waves
,
J. Appl. Phys.
57
,
767
776
.
64.
Taziev
RM
,
Kolosovsky
EA
, and
Kozlov
AS
(
1995
),
Pressure-sensitive cuts for surface acoustic waves in α-quartz
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
845
849
.
65.
Lee
PCY
and
Yong
Y-K
(
1987
),
Thickness vibrations of doubly rotated crystal plates under initial deformations
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
34
,
659
666
.
66.
Lee
PCY
Wang
YS
, and
Markenscoff
X
(
1975
),
High-frequency vibrations of crystal plates under initial stresses
,
J. Acoust. Soc. Am.
57
,
95
105
.
67.
Lee
PCY
,
Wang
YS
, and
Markenscoff
X
(
1976
),
Nonlinear effects of initial bending on the vibrations of crystal plates
,
J. Acoust. Soc. Am.
59
,
90
96
.
68.
Wang
ZY
,
Zhu
HZ
,
Dong
YG
,
Wang
JS
, and
Feng
GP
(
2001
),
Force-frequency coefficient of symmetrical incomplete circular quartz crystal resonator
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1471
1479
.
69.
Tiersten
HF
,
Sinha
BK
, and
Meeker
TR
(
1981
),
Intrinsic stress in thin films deposited on anisotropic substrates and its influence on the natural frequencies of piezoelectric resonators
,
J. Appl. Phys.
52
,
5614
5624
.
70.
Gafka
D
, and
Tani
J
(
1991
),
Parametric constitutive equations for electroelastic crystals upon electric or mechanical bias
,
J. Appl. Phys.
70
,
6679
6686
.
71.
Gafka
D
and
Tani
J
(
1993
),
Sensitivity of surface acoustic wave velocity in lithium niobate to electric field or biasing stress
,
J. Appl. Phys.
73
,
7145
7151
.
72.
Tiersten
HF
and
Sinha
BK
(
1978
),
A perturbation analysis of the attenuation and dispersion of surface waves
,
J. Appl. Phys.
49
,
87
95
.
73.
Joshi
SG
(
1982
),
Surface acoustic wave propagation in a biasing electric field
,
J. Acoust. Soc. Am.
72
,
1872
1878
.
74.
Nalamwar
AL
and
Epstein
M
(
1976
),
Surface acoustic waves in strained media
,
J. Appl. Phys.
47
,
43
48
.
75.
Lee
PCY
and
Yong
Y-K
(
1986
),
Frequency-temperature behavior of thickness vibrations of doubly rotated quartz plates affected by plate dimensions and orientations
,
J. Appl. Phys.
60
,
2327
2342
.
76.
Sinha
BK
and
Tiersten
HF
(
1980
),
On the temperature dependence of the velocity of surface waves in quartz
,
J. Appl. Phys.
51
,
4659
4665
.
77.
Tiersten
HF
and
Sinha
BK
(
1979
),
Temperature dependence of resonant frequency of electroded doubly-rotated quartz thickness-mode resonators
,
J. Appl. Phys.
50
,
8038
8051
.
78.
Stevens
DS
,
Tiersten
HF
, and
Sinha
BK
(
1983
),
Temperature dependence of the resonant frequency of electroded contoured AT-Cut quartz crystal resonators
,
J. Appl. Phys.
54
,
1704
1716
.
79.
Sorokin BP, Turchin PP, Burkov SI, Glushkov A, and Alexandrov KS (1996), Influence of static electric field, mechanical pressure and temperature on the propagation of acoustic waves in La3Ga5SiO14 piezoelectric single crystals, Proc IEEE Int Frequency Control Symp, 161–169.
80.
Yong
Y-K
(
1987
),
Three-dimensional finite-element solution of the Lagrangean equations for the frequency-temperature behavior of Y-cut and NT-cut bars
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
34
,
491
499
.
81.
Wang
J
(
1999
),
The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
1042
1046
.
82.
Yong
Y-K
,
Wang
J
, and
Imai
T
(
1999
),
On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
1
13
.
83.
Sinha
BK
and
Tiersten
HF
(
1984
),
Thermally generated transient frequency excursions in doubly-rotated quartz thickness-mode resonators
,
J. Appl. Phys.
55
,
3337
3347
.
84.
Kosinski JA, Pastore Jr RA, Yang JS, Yang X, and Turner JA (2002), Second-order frequency shifts in crystal resonators under relatively large biasing fields, Proc IEEE Int Frequency Control Symp, 103–110.
85.
Kosinski JA, Pastore Jr RA, Yang JS, Yang X, and Turner JA (2003), Perturbation theory for degenerate acoustic eigenmodes, Proc IEEE Int Frequency Control Symp, IEEE, New York.
86.
Kosinski JA, Pastore Jr RA, Yang JS, and Zhang X (2001), Thickness-shear vibration of crystal plates under time-dependent biasing deformations, Proc IEEE Int Frequency Control Symp, 597–604.
87.
Yang JS, Zhang X, Kosinski JA, and Pastore Jr RA (2002), Electrically forced thickness-shear vibration of a quartz plate under time-dependent biasing deformations, Proc IEEE Int Frequency Control Symp and PDA Exhibition, 96–102.
88.
Yang JS (2003), Frequency stability of piezoelectric resonators, Electro-Magneto-Mechanics of Advanced Material Systems and Structures, Y Shindo (ed), WIT Press, 249–260.
89.
Zhang X (2002), Analytical modeling of piezoelectric transformers and resonators, master’s degree thesis, Univ of Nebraska-Lincoln.
90.
EerNisse, EP, (2002), Quartz resonators vs their environment: Time bases or sensors? Seminar given to the Department of Engineering Mechanics, Univ of Nebraska-Lincoln.
91.
Karrer
HE
and
Leach
J
(
1969
),
A quartz resonator pressure transducer
,
IEEE Trans. Ind. Electron. Control Instrum.
16
,
44
50
.
92.
Karrer
E
and
Ward
R
(
1977
),
A low-range quartz resonator pressure transducer
,
ISA Trans.
16
,
90
98
.
93.
Besson
RJ
,
Boy
JJ
,
Glotin
B
,
Jinzaki
Y
, and
Sinha
B
(
1993
),
A dual-mode thickness-shear quartz pressure sensor
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
584
591
.
94.
Dulmet
B
,
Bourquin
R
, and
Shibanova
N
(
1995
),
Frequency-output force sensor using a multimode doubly rotated quartz resonator
,
Sens. Actuators A
48
,
109
116
.
95.
Clayton
LD
and
EerNisse
EP
(
1998
),
Quartz thickness-shear mode pressure sensor design for enhanced sensitivity
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
1196
1203
.
96.
Clayton LD and EerNisse EP (1996), Application of finite element analysis to the design of quartz thickness-shear mode pressure sensors, Proc IEEE Freq Control Symp, 541–549.
97.
Yang
JS
and
Zhang
X
(
2002
),
A high sensitivity pressure sensor
,
Sens. Actuators A
101
,
332
337
.
98.
Onoe M (1977) Quartz crystal accelerometer insensitive to temperature variation, Proc 31st Annual Frequency Control Symp, 62–70.
99.
Reedy
Jr
ED
and
Kass
WJ
(
1990
),
Finite-element analysis of a quartz digital accelerometer
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
464
474
.
100.
Tiersten
HF
,
Stevens
DS
, and
Das
PK
(
1980
),
Acoustic surface wave accelerometer and rotation rate sensor
, Proc. IEEE Ultrason Symp., IEEE, New York, 692–695.
101.
Tierste
HF
,
Stevens
DS
, and
Das
PK
(
1981
),
Circulating flexural wave rotation rate sensor
, Proc.-IEEE Ultrason. Symp., IEEE, New York, 163–166.
102.
Soderkvist
J
(
1994
),
Micromachined gyroscopes
,
Sens. Actuators A
43
,
65
71
.
103.
Yang JS (2002), Vibrations of rotating piezoelectric structures and angular rate sensors, Proc of the 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 378–382.
104.
Wade
WH
and
Slutsky
LJ
(
1962
),
Quartz crystal thermometer
,
Rev. Sci. Instrum.
33
,
212
213
.
105.
Smith
WL
and
Spencer
WJ
(
1963
),
Quartz crystal thermometer for measuring temperature deviations in the 10−3 to 10−6 °C range
,
Rev. Sci. Instrum.
34
,
268
270
.
106.
Hammond
DL
,
Adams
CA
, and
Schmidt
P
(
1965
),
A linear, quartz-crystal temperature-sensing element
,
ISA Trans.
4
,
349
354
.
107.
Ziegler
H
and
Tiesmeyer
J
(
1983
),
Digital sensor for radiation
,
Sens. Actuators
4
,
363
367
.
108.
Ziegler
H
(
1984
),
A low-cost digital temperature sensor system
,
Sens. Actuators
5
,
169
178
.
109.
Kanie
H
and
Kawashima
H
(
2000
),
Lame-mode miniaturized quartz temperature sensor
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
341
345
.
110.
Leblois
TG
and
Tellier
CR
(
2000
),
Micromachined resonant temperature sensors: theoretical and experimental results
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
333
340
.
111.
Yang
JS
and
Zhang
X
(
2003
),
Vibrations of a crystal plate under a thermal bias
,
J. Therm. Stresses
26
,
467
477
.
112.
EerNisse
EP
,
Ward
RW
, and
Wiggins
RB
(
1988
),
Survey of quartz bulk resonator sensor technologies
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
323
330
.
113.
EerNisse
EP
and
Wiggins
RB
(
2001
),
Review of thickness-shear mode quartz resonator sensors for temperature and pressure
,
IEEE Sensors Journal
1
,
79
87
.
114.
EerNisse
EP
(
2001
),
Quartz resonators vs their environment: time base or sensor?
,
Jpn. J. Appl. Phys. Part 1
,
40
,
3479
3483
.
115.
Hellwege K-H (ed) (1979), Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, New York.
116.
Cho
Y
and
Yamanouchi
K
(
1987
),
Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate
,
J. Appl. Phys.
61
,
875
887
.
117.
Thurston
RN
,
McSkimin
HJ
, and
Andreatch
P
(
1966
),
Third-order elastic constants of quartz
,
J. Appl. Phys.
37
,
267
275
.
118.
Brendal
R
(
1983
),
Material nonlinear piezoelectric coefficients of quartz
,
J. Appl. Phys.
54
,
5339
5346
.
119.
Hruska
CK
(
1989
),
Material nonlinearities and the extensional mode of quartz rods
, Proc. IEEE Ultrason Symp, IEEE, New York, 405–410.
120.
Hruska CK and Brendal R (1989), Determination of the third-order piezoelectric constants and electrostriction of alpha quartz using the thickness modes of plates, Proc 3rd Annual Symp on Frequency Control, 485–489.
121.
Hruska
CK
and
Brendal
R
(
1989
),
The electroelastic constants of quartz determined by the resonator method
,
J. Appl. Phys.
65
,
715
717
.
122.
Kittinger
E
,
Tichy
J
, and
Friedel
W
(
1986
),
Nonlinear piezoelectricity and electrostriction of alpha quartz
,
J. Appl. Phys.
60
,
1465
1471
.
123.
Reider
GA
,
Kittinger
E
, and
Tichy
J
(
1982
),
Electroelastic effect in alpha quartz
,
J. Appl. Phys.
53
,
8716
8721
.
124.
Nakagawa
Y
,
Yamanouchi
K
, and
Shibayama
K
(
1973
),
Third-order elastic constants of lithium niobate
,
J. Appl. Phys.
44
,
3969
3974
.
125.
Korobov
AI
and
Lyamov
VE
(
1975
),
Nonlinear piezoelectric coefficients of LiNbO3,
Sov. Phys. Solid State
17
,
932
933
.
126.
Aleksandrov
KS
,
Kirensky
LV
,
Sorokin
BP
,
Turchin
PP
, and
Glushkov
DA
(
1992
),
Non-linear piezoelectricity in La3Ga5SiO14 piezoelectric single crystal
,
Ferroelectr., Lett. Sect.
14
,
115
125
.
127.
Aleksandrov
KS
,
Sorokin
BP
,
Turchin
PP
,
Burkov
SI
,
Glushkov
DA
, and
Karpovich
AA
(
1995
),
Effects of static electric field and of mechanical pressure on surface acoustic waves propagation in La3Ga5SiO14 piezoelectric single crystals
,
Proc.-IEEE Ultrason. Symp.
, IEEE, New York
,
409
412
.
128.
Sorokin
BP
,
Turchin
PP
, and
Glushkov
DA
(
1994
),
Elastic nonlinearity and propagation of volume acoustic waves under conditions of homogeneous mechanical stresses in a La3Ga5SiO14 single crystal
,
Phys. Solid State
36
,
1545
1550
.
129.
Alexandrov KS, Kirensky LV, Turchin PP, Sorokin BP, Karpovich AA, and Nefedov VA (2000), Bulk acoustic waves propagation in Li2B4O7 piezoelectric crystals under the static uniaxial mechanical pressure, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 214–217.
130.
Sorokin BP, Marushyak AN, and Alexandrov KS (2000), Influence of non-homogeneous unaxial pressure on the propagation of bulk acoustic waves in crystals, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 404–409.
131.
Chang
ZP
and
Barsch
GR
(
1967
),
Nonlinear pressure dependence of elastic constants and fourth-order elastic constants of Gesium Halides
,
Phys. Rev. Lett.
19
,
1381
1382
.
132.
Chang
ZP
and
Barsch
GR
(
1971
),
Pressure dependence of the elastic constants of RbCl, RbBr and RbI
,
J. Phys. Chem. Solids
32
,
27
40
.
133.
Markenscoff
X
(
1977
),
On the determination of the fourth-order elastic constants
,
J. Appl. Phys.
48
,
3752
3755
.
134.
Markenscoff
X
(
1977
),
Higher-order effects of initial deformation on the vibration of crystal plates
,
J. Acoust. Soc. Am.
61
,
436
438
.
135.
Lee
PCY
and
Yong
Y-K
(
1984
),
Temperature derivatives of elastic stiffness derived from the frequency-temperature behavior of quartz plates
,
J. Appl. Phys.
56
,
1514
1521
.
136.
Sinha
BK
and
Tiersten
HF
(
1979
),
First temperature derivatives of the fundamental elastic constants of quartz
,
J. Appl. Phys.
50
,
2732
2739
.
137.
Kahan A (1982), Elastic constants of quartz and their temperature coefficients, Proc of IEEE Annual Frequency Control Symp, 159–169.
138.
Mason WP (1950), Piezoelectric Crystals and Their Applications to Ultrasonics, Van Nostrand, New York.
139.
Mason WP (1966), Crystal Physics of Interaction Processes, Academic Press, New York.
140.
Nye JF (1957), Physical Properties of Crystals, Oxford Univ Press, Oxford, UK.
141.
Rittenmyer
KM
(
1994
),
Electrostrictive ceramics for underwater transducer applications
,
J. Acoust. Soc. Am.
95
,
849
856
.
142.
Hom
CL
and
Shankar
N
(
1994
),
A fully coupled constitutive model for electrostrictive ceramic materials
,
J. Intell. Mater. Syst. Struct.
5
,
795
801
.
143.
Piquette
JC
and
Forsythe
SE
(
1998
),
Generalized material model of lead magnesium niobate (PMN) and an associated electromechanical equivalent circuit
,
J. Acoust. Soc. Am.
104
,
2763
2772
.
144.
Zheng
Q-S
(
1993
),
On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors
,
Int. J. Eng. Sci.
31
,
1399
1453
.
145.
Hu
YT
,
Yang
JS
, and
Jiang
Q
(
2000
),
Wave propagation in electrostrictive materials under biasing fields
, Proc. IEEE Ultrason Symp, IEEE, New York, 897–900.
146.
Chai
J-F
and
Wu
T-T
(
1996
),
Propagation of surface waves in a prestressed piezoelectric material
,
J. Acoust. Soc. Am.
100
,
2112
2122
.
147.
Hu YT, Yang JS, and Jiang Q, Surface waves in electrostrictive materials under biasing fields, ZAMP (accepted for publication).
148.
Ganguly
M
(
1984
),
Bleustein-Gulyave waves in a pre-stressed piezoelectric half space
,
Proc. Indian Acad. Sci., Sect. A
50A
,
375
381
.
149.
Yang
JS
(
2001
),
Bleustein-Gulyaev waves in strained piezoelectric ceramics
,
Mech. Res. Commun.
28
,
679
683
.
150.
Ganguly
M
and
Pal
AK
(
1988
),
Amplification of B-G waves in a pre-stressed piezoelectric half space of hexagonal symmetry
,
Acta Phys. Hung.
63
,
321
329
.
151.
Liu
H
,
Wang
TJ
, and
Wang
ZK
(
2000
),
Effect of initial stress on the propagation behavior of generalized Rayleigh waves in layered piezoelectric structures
,
Acta Mech. Sin.
32
,
491
496
.
152.
Liu
H
,
Wang
ZK
, and
Wang
TJ
(
2001
),
Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure
,
Int. J. Infrared Millim. Waves
38
,
37
51
.
153.
Soos
E
and
Baesu
E
(
2001
),
Transverse acousto-electric waves in pre-strained and pre-polarized piezoelectrics
,
Mathematical Reports
3
,
75
82
.
154.
Simionescu-Panait
O
(
2000
),
The influence of initial fields on wave propagation in piezoelectric crystals
,
Int. J. Appl. Electromagn. Mech.
12
,
241
251
.
155.
Simionescu-Panait
O
(
2002
),
Wave propagation in cubic crystals subject to initial mechanical and electric fields
,
J. Appl. Math. Phys (ZAMP)
53
,
1038
1051
.
156.
Simionescu
O
and
Soos
E
(
2001
),
Wave propagation in piezoelectric crystals subjected to initial deformations and electric fields
,
Math. Mech. Solids
6
,
437
445
.
157.
Baesu
E
(
2003
), On electroacoustic energy flux,
J. Appl. Math. Phys. (ZAMP)
54
,
1001
1009
.
158.
Soos
E
(
1996
),
Stability, resonance and stress concentration in prestressed piezoelectric crystals containing a crack
,
Int. J. Eng. Sci.
34
,
1647
1673
.
159.
Baesu
E
and
Soos
E
(
2001
),
Antiplane piezoelectricity in the presence of initial mechanical and electrical fields
,
Math. Mech. Solids
6
,
409
422
.
160.
Baesu E and Liu F (2002), The influence of biasing fields on the behavior of piezoelectric materials, Proc of 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 9–13.
161.
Baesu
E
,
Fortune
D
, and
Soos
E
(
2003
),
Incremental behavior of hyperelastic dielectrics and piezoelectric crystals
,
J. Appl. Math. Phys. (ZAMP)
54
,
160
178
.
162.
Liu FH (2002), Piezoelectricity with initial fields: Antiplane problems, master’s degree thesis, Univ of Nebraska-Lincoln.
163.
Baesu E, The mechanics of pre-stressed and pre-polarized piezoelectric crystals, Advances in Continuum Mechanics, A Smirnov et al. (ed), World Scientific (in press).
164.
Baesu
E
, and
Soos
E
(
2001
),
Antiplane fracture in a pre-stressed and pre-polarized piezoelectric crystal
,
IMA J. Mathematics Appl. Bus. Indust.
66
,
499
508
.
165.
Baesu
E
and
Soos
E
, Fracture criteria for prestressed and prepolarized piezoelectric crystals
Math. Mech. Solids
8
,
327
334
.
166.
Schreuer
J
(
2002
),
Elastic and piezoelectric properties of La3Ga5SiO14 and La3Ga5.5Ta0.5O14: An application of resonant ultrasound spectroscopy
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
1474
1479
.
You do not currently have access to this content.