A review of the state of the art in micropumping technologies for driving fluid through microchannels is presented with a particular emphasis on small-scale cooling applications. An extensive variety of micropumping techniques developed over the past fifteen years in the literature is reviewed. The physical principles, engineering limitations, and advantages of approximately twenty different kinds of micropumps are reviewed. The available micropumping techniques are compared quantitatively, primarily in terms of the maximum achievable flow rate per unit cross-sectional area of the microchannel and the maximum achievable back pressure. A concise table is developed to facilitate the convenient comparison of the micropumps based on different criteria including their miniaturization potential, size (in-plane and out-of-plane), actuation voltage and power required per unit flow rate, ease and cost of fabrication, minimum and maximum frequency of operation, and suitability for electronics cooling. Some important performance characteristics of the micropumps, which are likely to be decisive for specific applications, are also discussed. The current state of the art in micropump design and fabrication is also comprehensively reviewed. There are 171 references cited in this review article.

1.
Thermal management technology roadmap of the National Electronics Manufacturing Initiative (NEMI), 2002.
2.
Garimella
SV
and
Sobhan
CB
(
2003
),
Transport in microchannels: A critical review
,
Annu. Rev. Heat Transfer
15
,
1
50
.
3.
Gravesen
P
,
Branebjerg
J
, and
Jensen
OS
(
1993
),
Microfluidics: A review
,
J. Micromech. Microeng.
3
,
168
182
.
4.
Shoji
S
and
Esashi
M
(
1994
),
Microflow devices and systems
,
J. Micromech. Microeng.
4
,
157
171
.
5.
Elwenspoek
M
,
Lammerink
TSJ
,
Miyake
R
, and
Fluitman
JHJ
(
1994
),
Towards integrated microliquid handling systems
,
J. Micromech. Microeng.
4
,
227
245
.
6.
Ho
C-M
and
Tai
Y-C
(
1998
),
Micro-Electro-Mechanical-Systems (MEMS) and fluid flows
,
Annu. Rev. Fluid Mech.
30
,
579
612
.
7.
Gad-el-Hak
M
(
1999
),
The fluid mechanics of microdevices: The Freeman Scholar Lecture
,
ASME J. Fluids Eng.
121
,
5
33
.
8.
Ahn CH and Allen MG (1995), Fluid micropumps based on rotary magnetic actuators, Proc of IEEE Micro Electro Mechanical Systems (MEMS), Amsterdam, Netherlands, 408–412.
9.
Zengerle R, Richter A, and Sandmaier H (1992), A micro membrane pump with electrostatic actuation, Proc of IEEE Micro Electro Mechanical Systems Workshop, 19–24.
10.
Smits
JG
(
1990
),
Piezoelectric micropump with three valves working peristaltically
,
Sens. Actuators, A
21
,
203
206
.
11.
Bart
SF
,
Tavrow
LS
,
Mehregany
M
, and
Lang
JH
(
1990
),
Microfabricated electrohydrodynamic pumps
,
Sens. Actuators, A
21–23
,
193
197
.
12.
Richter A and Sandmaier H (1990), An electrohydrodynamic micropump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 99–104.
13.
Darabi
J
,
Ohadi
MM
, and
DeVoe
D
(
2001
),
An electrohydrodynamic polarization micropump for electronic cooling
,
J. Microelectromech. Syst.
10
,
98
106
.
14.
Manz
A
,
Effenhauser
CS
,
Burggraf
N
,
Harrison
DJ
,
Seiler
K
, and
Fluri
K
(
1994
),
Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems
,
J. Micromech. Microeng.
4
,
257
265
.
15.
Lemoff AV, Lee AP, Miles RR, and McConaghy CF (1999), An AC magnetohydrodynamic micropump: Towards a true integrated microfluidic system, Transducers’ 99, Sendai, Japan, 1126–1129.
16.
Jun TK and Kim C-J (1996), Microscale pumping using traversing vapor bubbles in microchannels, 1996 Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, 144–147.
17.
Bohm S, Olthuis W, and Bergveld P (1999), An electrochemically actuated micropump for use in a “push-pull” microdialysis based in-vivo monitoring system, Transducers’ 99, Sendai, Japan, 880–881.
18.
Moroney RM, White RM, and Howe RT (1990), Fluid motion produced by ultrasonic lamb waves, IEEE Ultrasonics Symp, 355–358.
19.
Bockeris JOM and Reddy AKN (1970), Modern Electrochemistry, Plenum, New York.
20.
Yun K-S, Cho I-J, Bu J-U, Kim G-H, Jeon Y-S, Kim C-J, and Yoon E (2001), A micropump driven by continuous electrowetting actuation for low voltage and low power operations, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 487–490.
21.
Weisener T, Voegele G, Widmann M, Bark C, Schraft RD, Bertholds A, and Braunschweiler A (1996), Micropump/fluidic micromotor, Proc of Actuator 96: 5th Int Conf on New Actuators, H Borgmann (ed), 104–107.
22.
Weisener T, Bark C, Schraft RD, Voegele G, Widmann M, Bertholds A, and Braunschweiler A (1996), Development and fabrication of a rotary micropump and its industrial and medical applications, Proc. of SPIE, 2882, 218–225.
23.
Sen
M
,
Wajerski
D
, and
Gad-el-Hak
M
(
1996
),
A novel pump for MEMS applications
,
ASME J. Fluids Eng.
118
,
624
627
.
24.
Dewa AS, Deng K, Ritter DC, Bonham C, Guckel H, and Massood-Ansari S (1997), Development of LIGA-fabricated, self-priming, in-line gear pumps, Transducers’ 97, Chicago, 757–760.
25.
Hatch
A
,
Kamholz
AE
,
Holman
G
,
Yager
P
, and
Bohringer
KF
(
2001
),
A ferrofluidic magnetic micropump
,
J. Microelectromech. Syst.
10
,
215
221
.
26.
van Lintel
HTG
,
van De Pol
FCM
, and
Bouwstra
S
(
1988
),
A piezoelectric micropump based on micromachining of silicon
,
Sens. Actuators
15
,
153
167
.
27.
van der Schoot
BH
,
Jeanneret
S
,
van den Berg
A
, and
de Rooij
NF
(
1993
),
A modular miniaturized chemical analysis system
,
Sens. Actuators B
13
,
333
335
.
28.
van der Schoot
BH
,
Jeanneret
S
,
van den Berg
A
, and
de Rooij
NF
(
1993
),
Modular setup for a miniaturized chemical analysis system
,
Sens. Actuators B
15
,
211
213
.
29.
Gass
V
,
van der Schoot
BH
,
Jeanneret
S
, and
de Rooij
NF
(
1993
),
Micro liquid handling using a flow-regulated silicon micropump
,
J. Micromech. Microeng.
3
,
214
215
.
30.
Gass
V
,
van der Schoot
BH
,
Jeanneret
S
, and
de Rooij
NF
(
1994
),
Integrated flow-regulated silicon micropump
,
Sens. Actuators, A
43
,
335
338
.
31.
Esashi
M
,
Shoji
S
, and
Nakano
A
(
1989
),
Normally closed microvalve and micropump fabricated on a silicon wafer
,
Sens. Actuators
20
,
163
169
.
32.
Shoji
S
,
Nakagawa
S
, and
Esashi
M
(
1990
),
Micropump and sample-injector for integrated chemical analyzing systems
,
Sens. Actuators, A
21
,
189
192
.
33.
Shoji
S
,
Esashi
M
,
van der Schoot
B
, and
de Rooij
N
(
1992
),
A study of a high-pressure micropump for integrated chemical analysing systems
,
Sens. Actuators, A
32
,
335
339
.
34.
Carrozza
MC
,
Croce
N
,
Magnani
B
, and
Dario
P
(
1995
),
A piezoelectric-driven stereolithography-fabricated micropump
,
J. Micromech. Microeng.
5
,
177
179
.
35.
Stehr
M
,
Messner
S
,
Sandmaier
H
, and
Zengerle
R
(
1996
),
The VAMP—A new device for handling liquids or gases
,
Sens. Actuators, A
57
,
153
157
.
36.
Zengerle
R
,
Ulrich
J
,
Kluge
S
,
Richter
M
, and
Richter
A
(
1995
),
A bidirectional silicon micropump
,
Sens. Actuators, A
50
,
81
86
.
37.
Nguyen
NT
,
Schubert
S
,
Richter
S
, and
Do¨tzel
W
(
1998
),
Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor
,
Sens. Actuators, A
69
,
85
91
.
38.
Ederer
I
,
Raetsch
P
,
Schullerus
W
,
Tille
C
, and
Zech
U
(
1997
),
Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output
,
Sens. Actuators, A
62
,
752
755
.
39.
Park JH, Yoshida K, and Yokota S (1997), A piezoelectric micropump using resonance drive; proposal of resonance drive and basic experiments on pump characteristics, Fluid Power Systems and Technology, ASME FPST 4/DSC 63, 77–82.
40.
Park
JH
,
Yoshida
K
, and
Yokota
S
(
1999
),
Resonantly driven piezoelectric micropump; fabrication of a micropump having high power density
,
Mechatronics
9
,
687
702
.
41.
Koch
M
,
Harris
N
,
Maas
R
,
Evans
AGR
,
White
NM
, and
Brunnschweiler
A
(
1997
),
A novel micropump design with thick-film piezoelectric actuation
,
Meas. Sci. Technol.
70
,
49
57
.
42.
Koch
M
,
Harris
N
,
Evans
AGR
,
White
NM
, and
Brunnschweiler
A
(
1998
),
A novel micromachined pump based on thick-film piezoelectric actuation
,
Sens. Actuators, A
70
,
98
103
.
43.
Cunneen
J
,
Lin
YC
,
Caraffini
S
,
Boyd
JG
,
Hesketh
PJ
,
Lunte
SM
, and
Wilson
GS
(
1998
),
A positive displacement micropump for microdialysis
,
Mechatronics
8
,
561
583
.
44.
Kaemper K-P, Doepper J, Ehrfeld W, and Oberbeck S (1998), A self-filling low-cost membrane micropump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 432–437.
45.
Linnemann R, Woias P, Senfft C-D, and Ditterich JA (1998), Self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 532–537.
46.
Maillefer D, van Lintel H, Ray-Mermet G, and Hirschi R (1999), A high-performance silicon micropump for an implantable drug delivery system, Proc of 12th IEEE Conf on Micro Electro Mechanical Systems, Orlando FL, 541–546.
47.
Maillefer D, Gamper S, Frehner B, Balmer P, van Lintel H, and Renaud P (2001), A high-performance silicon micropump for disposable drug delivery systems, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 413–417.
48.
Li HQ, Roberts DC, Steyn JL, Turner KT, Carretero JA, Yaglioglu O, Su YH, Saggere L, Haggod NW, Spearing SM, Schmidt MA, Mlcak R, and Breuer KS (2000), A high frequency high flow rate piezoelectrically driven MEMS micropump, 2000 Solid-State Sensor and Actuator Workshop, Hilton Head SC, 69–72.
49.
King
TG
,
Preston
ME
,
Murphy
BJM
, and
Cannell
DS
(
1990
),
Piezoelectric ceramic actuators: A review of machinery applications
,
Precis. Eng.
12
,
131
136
.
50.
Brei
DE
and
Blechschmidt
J
(
1992
),
Design and static modeling of a semiconductor polymeric piezoelectric microactuator
,
J. Microelectromech. Syst.
1
,
106
115
.
51.
Low
TS
and
Guo
W
(
1995
),
Modeling of a three-layer piezoelectric bimorph beam with hysteresis
,
J. Microelectromech. Syst.
4
,
230
237
.
52.
DeVoe
DL
and
Pisano
AP
(
1997
),
Modeling and optimal design of piezoelectric cantilever microactuators
,
J. Microelectromech. Syst.
6
,
266
270
.
53.
Weinberg
MS
(
1999
),
Working equations for piezoelectric actuators and sensors
,
J. Microelectromech. Syst.
8
,
529
533
.
54.
Debeda
H
,
Freyhold
Tv
,
Mohr
J
,
Wallrabe
U
, and
Wengelink
J
(
1999
),
Development of miniaturized piezoelectric actuators for optical applications realized using LIGA technology
, J. Microelectromech. Syst. 258–263.
55.
Accoto
D
,
Carrozza
MC
, and
Dario
P
(
2000
),
Modelling of micropumps using unimorph piezoelectric actuator and ball valves
,
J. Micromech. Microeng.
10
,
277
281
.
56.
Morris
CJ
and
Forster
FK
(
2000
),
Optimization of a circular piezoelectric bimorph for a micropump driver
,
J. Micromech. Microeng.
10
,
459
465
.
57.
Ilzhofer
A
,
Ritter
B
, and
Tsakmakis
Ch
(
1995
),
Development of passive microvalves by the finite element method
,
J. Micromech. Microeng.
5
,
226
230
.
58.
Ulrich
J
and
Zengerle
R
(
1996
),
Static and dynamic flow simulation of a KOH-etched microvalve using the finite-element method
,
Sens. Actuators, A
53
,
379
385
.
59.
Zhang
Y
and
Wise
KD
(
1994
),
Performance of non-planar silicon diaphragms under large deflections
,
J. Microelectromech. Syst.
3
,
59
68
.
60.
Zengerle
R
and
Richter
M
(
1994
),
Simulation of microfluid systems
,
J. Micromech. Microeng.
4
,
192
204
.
61.
Bourouina
T
and
Grandchamp
J-P
(
1996
),
Modeling micropumps with electrical equivalent networks
,
J. Micromech. Microeng.
6
,
398
404
.
62.
Carmona
M
,
Marco
S
,
Samitier
J
, and
Morante
JR
(
1996
),
Dynamic simulations of micropumps
,
J. Micromech. Microeng.
6
,
128
130
.
63.
Voigt
P
,
Schrag
G
, and
Wachutka
G
(
1998
),
Electrofluidic full-system modelling of a flap valve micropump based on Kirchhoffian network theory
,
Sens. Actuators, A
66
,
9
14
.
64.
Richter
M
,
Linnemann
R
, and
Woias
P
(
1998
),
Robust design of gas and liquid micropumps
,
Sens. Actuators, A
68
,
480
486
.
65.
Voigt
P
,
Schrag
G
, and
Wachutka
G
(
1998
),
Microfluidic system modeling using VHDL-AMS and circuit simulation
,
Microelectron. J.
29
,
791
797
.
66.
Cabuz C, Herb WR, Cabuz EI, and Lu SL (2001), The dual diaphragm pump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 519–522.
67.
Bourouina
T
,
Bossebuf
A
, and
Grandchamp
J-P
(
1997
),
Design and simulation of an electrostatic micropump for drug-delivery applications
,
J. Micromech. Microeng.
10
,
186
188
.
68.
Franc¸ais
O
,
Dufour
I
, and
Sarraute
E
(
1997
),
Analytical static modelling and optimization of electrostatic micropumps
,
J. Micromech. Microeng.
7
,
183
185
.
69.
Franc¸ais
O
and
Dufour
I
(
1998
),
Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena
,
Sens. Actuators, A
70
,
56
60
.
70.
Franc¸ais
O
and
Dufour
I
(
2000
),
Enhancement of elementary displaced volume with electrostatically actuated diaphragms: Application to electrostatic micropumps
,
J. Micromech. Microeng.
10
,
282
286
.
71.
Bo¨hm
S
,
Olthuis
W
, and
Bergveld
P
(
1999
),
A plastic micropump constructed with conventional techniques and materials
,
Sens. Actuators, A
77
,
223
228
.
72.
Gong
Q
,
Zhou
Z
,
Yang
Y
, and
Wang
X
(
2000
),
Design, optimization and simulation on microelectromagnetic pump
,
Sens. Actuators, A
83
,
200
207
.
73.
Khoo
M
and
Liu
C
(
2001
),
Micro magnetic silicone elastomer membrane actuator
,
Sens. Actuators, A
89
,
259
266
.
74.
Kallenbach
E
,
Kube
H
,
Zo¨ppig
V
,
Feindt
K
,
Hermann
R
, and
Beyer
F
(
1999
),
New polarized electromagnetic actuators as integrated mechatronic components—design and application
,
Mechatronics
9
,
769
784
.
75.
van de Pol
FCM
,
van Lintel
HTG
,
Elwenspoek
M
, and
Fluitman
JHJ
(
1990
),
A thermopneumatic micropump based on micro-engineering techniques
,
Sens. Actuators, A
21
,
198
202
.
76.
Wego
A
and
Pagel
L
(
2001
),
A self-filling micropump based on PCB technology
,
Sens. Actuators, A
88
,
220
226
.
77.
Wego
A
,
Glock
HW
,
Pagel
L
, and
Richter
S
(
2001
),
Investigations on thermo-pneumatic volume actuators based on PCB technology
,
Sens. Actuators, A
93
,
95
102
.
78.
Benard
WL
,
Kahn
H
,
Heuer
AH
, and
Huff
MA
(
1998
),
Thin-film shape-memory alloy actuated micropumps
,
J. Microelectromech. Syst.
7
,
245
251
.
79.
Xu
D
,
Wang
L
,
Ding
G
,
Zhou
Y
,
Yu
A
, and
Cai
B
(
2001
),
Characteristics and fabrication of NiTi/Si diaphragm micropump
,
Sens. Actuators, A
93
,
87
92
.
80.
Makino
E
,
Mitsuya
T
, and
Shibata
T
(
2001
),
Fabrication of TiNi shape memory micropump
,
Sens. Actuators, A
88
,
256
262
.
81.
Makino
E
,
Shibata
T
, and
Kato
K
(
1999
),
Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film
,
Sens. Actuators, A
78
,
163
167
.
82.
Makino
E
,
Mitsuya
T
, and
Shibata
T
(
2000
),
Dynamic actuation properties of TiNi shape memory diaphragm
,
Sens. Actuators, A
79
,
128
135
.
83.
Makino
E
,
Mitsuya
T
, and
Shibata
T
(
2000
),
Micromachining of TiNi shape memory thin film for fabrication of micropump
,
Sens. Actuators, A
79
,
251
259
.
84.
Krulevitch
P
,
Lee
AP
,
Ramsey
PB
,
Trevino
JC
,
Hamilton
J
, and
Northrup
MA
(
1996
),
Thin film shape memory alloy microactuators
,
J. Microelectromech. Syst.
5
,
270
282
.
85.
Mizoguchi H, Ando M, Mizuno T, Takagi T, and Nakajima N (1992), Design and fabrication of light driven micropump, Proc of IEEE Micro Electro Mechanical Systems Workshop, 31–36.
86.
Quandt
E
and
Seemann
K
(
1995
),
Fabrication and simulation of magnetostrictive thin-film actuators
,
Sens. Actuators, A
50
,
105
109
.
87.
Body
C
,
Reyne
G
,
Meunier
G
,
Quandt
E
, and
Seemann
K
(
1997
),
Application of magnetostrictive thin films for Microdevices
,
IEEE Trans. Magn.
33
,
2163
2166
.
88.
Quandt
E
and
Ludwig
A
(
2000
),
Magnetostrictive actuation in microsystems
,
Sens. Actuators, A
81
,
275
280
.
89.
Stemme
E
and
Stemme
G
(
1993
),
A valveless diffuser/nozzle-based fluid pump
,
Sens. Actuators, A
39
,
159
167
.
90.
Olsson
A
,
Stemme
G
, and
Stemme
E
(
1995
),
A valve-less planar fluid pump with two pump chambers
,
Sens. Actuators, A
47
,
549
556
.
91.
Olsson
A
,
Enoksson
P
,
Stemme
G
, and
Stemme
E
(
1996
),
A valve-less planar pump isotropically etched in silicon
,
J. Micromech. Microeng.
6
,
87
91
.
92.
Olsson
A
,
Enoksson
P
,
Stemme
G
, and
Stemme
E
(
1997
),
Micromachined flat-walled valveless diffuser pumps
,
J. Microelectromech. Syst.
6
,
161
166
.
93.
Olsson
A
,
Stemme
G
,
Larsson
O
,
Holm
J
,
Lundbladh
L
, and
O¨hman
O
(
1998
),
Valve-less diffuser micropumps fabricated using thermoplastic replication
,
Sens. Actuators, A
64
,
63
68
.
94.
Andersson
H
,
van der Wijngaart
W
,
Nilsson
P
,
Enoksson
P
, and
Stemme
G
(
2001
),
A valve-less diffuser micropump for microfluidic analytical systems
,
Sens. Actuators B
72
,
259
265
.
95.
Gerlach
T
,
Schuenemann
M
, and
Wurmus
H
(
1995
),
A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves
,
J. Micromech. Microeng.
5
,
199
201
.
96.
Forster FK, Bardell RL, Afromowitz MA, Sharma NR, and Blanchard A (1995), Design, fabrication and testing of fixed-valve micro-pumps, Proc of ASME Fluids Engineering Division, FED 234, 39–44.
97.
Bardell RL, Sharma NR, Forster FK, Afromowitz MA, and Penney RJ (1997), Designing high-performance micro-pumps based on no-moving-parts valves, ASME Microelectromechanical Systems, DSC 62/HTD 354, 47–53.
98.
Jang LS, Morris CJ, Sharma NR, Bardell RL, and Forster FK (1999), Transport of particle-laden fluids through fixed-valve micropumps, Microelectromechanical Systems, ASME MEMS 1, 503–509.
99.
Jang LS, Sharma NR, and Forster FK (2000), The effect of particles on performance of fixed-valve micropumps, Proc of 4th Int Symp on Micro Total Analysis Systems (μTAS), Enschede, Netherlands, 283–286.
100.
Koch
M
,
Evans
AGR
, and
Brunnschweiler
A
(
1998
),
The dynamic micropump driven with a screen printed PZT actuator
,
J. Micromech. Microeng.
8
,
119
122
.
101.
Schabmueller CGJ, Koch M, Evans AGR, Brunnschweiler A, and Kraft M (2000), Design and fabrication of a self-aligning gas/liquid micropump, Proc of SPIE, 4177, 282–290.
102.
Jiang
XN
,
Zhou
ZY
,
Huang
XY
,
Li
Y
,
Yang
Y
, and
Liu
CY
(
1998
),
Micronozzle/diffuser flow and its application in micro valveless pumps
,
Sens. Actuators, A
70
,
81
87
.
103.
Jeong OC and Yang SS (2000), Fabrication of a thermopneumatic micropump with a corrugated p+ diaphragm, Transducers’ 99, Sendai, Japan, 1780–1783.
104.
Jeong
OC
and
Yang
SS
(
2000
),
Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm
,
Sens. Actuators, A
83
,
249
255
.
105.
Gerlach
T
and
Wurmus
H
(
1995
),
Working principle and performance of the dynamic micropump
,
Sens. Actuators, A
50
,
135
140
.
106.
Olsson
A
,
Stemme
G
, and
Stemme
E
(
1996
),
Diffuser-element design investigation for valve-less pumps
,
Sens. Actuators, A
57
,
137
143
.
107.
Heschel
M
,
Mullenborn
M
, and
Bouwstra
S
(
1997
),
Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon
,
J. Microelectromech. Syst.
6
,
41
47
.
108.
Gerlach
T
(
1998
),
Mirodiffusers as dynamic passive valves for micropump applications
,
Sens. Actuators, A
69
,
181
191
.
109.
Olsson
A
,
Stemme
G
, and
Stemme
E
(
2000
),
Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps
,
Sens. Actuators, A
84
,
165
175
.
110.
Singhal V, Garimella SV, and Murthy J (2003), Numerical characterization of low Reynolds number flow through the nozzle-diffuser element in a valveless micropump, Proc of 6th ASME/JSME Thermal Engineering Joint Conf, Kohala Coast HI, TED-AJ03, 1–9.
111.
Ullmann
A
(
1998
),
The piezoelectric valve-less pump-performance enhancement analysis
,
Sens. Actuators, A
69
,
97
105
.
112.
Olsson
A
,
Stemme
G
, and
Stemme
E
(
1999
),
A numerical design study of the valveless diffuser pump using a lumped-mass model
,
J. Micromech. Microeng.
9
,
34
44
.
113.
Nguyen N-T and Huang X (2000), Numerical simulation of pulse-width-modulated micropumps with diffuser/nozzle elements, Int Conf on Modeling and Simulation of Microsystems 636–639.
114.
Pan
LS
,
Ng
TY
,
Liu
GR
,
Lam
KY
, and
Jiang
TY
(
2001
),
Analytical solutions for the dynamic analysis of a valveless micropump-A fluid-membrane coupling study
,
Sens. Actuators, A
93
,
173
181
.
115.
Matsumoto S, Klein A, and Maeda R (1999), Development of bi-directional valve-less micropump for liquid, Proc of 12th IEEE Conf on Micro Electro Mechanical Systems, Orlando FL, 141–146.
116.
Grosjean C and Tai Y-C (1999), A thermopneumatic peristaltic micropump, Transducers’ 99, Sendai, Japan, 1776–1779.
117.
Nguyen
N-T
and
Huang
X
(
2001
),
Miniature valveless pumps based on printed circuit board technique
,
Sens. Actuators, A
88
,
104
111
.
118.
Cao
L
,
Mantell
S
, and
Polla
D
(
2001
),
Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology
,
Sens. Actuators, A
94
,
117
125
.
119.
Richter
A
,
Plettner
A
,
Hofmann
KA
, and
Sandmaier
H
(
1991
),
A micromachined electrohydrodynamic (EHD) pump
,
Sens. Actuators, A
29
,
159
168
.
120.
Furuya
A
,
Shimokawa
F
,
Matsuura
T
, and
Sawada
R
(
1996
),
Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump
,
J. Micromech. Microeng.
6
,
310
319
.
121.
Wong CC, Adkins DR, and Chu D (1996), Development of a micropump for microelectronic cooling, Microelectromechanical Systems (MEMS), DSC 59, 239–244.
122.
Ahn
S-H
and
Kim
Y-K
(
1998
),
Fabrication and experiment of a planar micro ion drag pump
,
Sens. Actuators, A
70
,
1
5
.
123.
Fuhr G, Hagedorn R, Muller T, Benecke W, and Wagner B (1992), Pumping of water solutions in microfabricated electrohydrodynamic systems, Proc of IEEE Micro Electro Mechanical Systems Workshop, 25–30.
124.
Fuhr
G
,
Hagedorn
R
,
Muller
T
,
Benecke
W
, and
Wagner
B
(
1992
),
Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity
,
J. Microelectromech. Syst.
1
,
141
146
.
125.
Fuhr
G
,
Schnelle
T
, and
Wagner
B
(
1994
),
Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids
,
J. Micromech. Microeng.
4
,
217
226
.
126.
Moesner FM and Higuchi T (1995), Devices for particle handling by an AC electric field, Proc of IEEE Micro Electro Mechanical Systems, 66–71.
127.
Zeng
S
,
Chen
CH
,
Mikkelsen
Jr
JC
, and
Santiago
JC
(
2001
), Fabrication and characterization of electroosmotic micropumps, 79, 107–114.
128.
Zeng S, Chen CH, Mikkelsen JC, and Santiago JG (2000), Fabrication and characterization of electrokinetic micro pumps, ITherm, Las Vegas NV 31–36.
129.
Zeng
S
,
Chen
CH
,
Santiago
JG
,
Chen
J-R
,
Zare
RN
,
Tripp
JA
,
Svec
F
, and
Fre´chet
JMJ
(
2002
),
Electroosmotic flow pumps with polymer frits
,
Sens. Actuators B
82
,
209
212
.
130.
Yao S, Huber, D, Mikkelsen JC, and Santiago JC (2001), A large flowrate electroosmotic pump with micron pores, ASME IMECE, MEMS-23890, 1–7.
131.
Chen CH, Zeng S, Mikkelsen JC and Santiago JG (2000), Development of a planar electrokinetic micropump, Proc of ASME Int Mech Eng Congress and Exposition, Orlando FL, MEMS 1, 523–528.
132.
Paul PH, Arnold DW, and Rakestraw DJ (1998), Electrokinetic generation of high pressures using porous microstructures, Proc of μ-TAS, Banff, Canada, 49–52.
133.
Deshpande M, Ghaddar C, Gilbert JR, John PMS, Woudenberg T, Connell C, Molho J, Herr A, Mungal G, and Kenny T (1998), Numerical framework for the modeling of electrokinetic flows, Proc of SPIE, 3515, 217–227.
134.
Rife JC and Bell MI (1998), Acousto- and electroosmotic microfluidic controllers, Proc of SPIE, 3515, 125–135.
135.
Gan
W-E
,
Yang
L
,
He
Y-Z
,
Zeng
R-H
,
Cervera
ML
, and
de la Guardia
M
(
2000
),
Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium (VI) in waste-water
,
Talanta
51
,
667
675
.
136.
Arulanandam
S
and
Li
D
(
2000
),
Liquid transport in rectangular microchannels by electroosmotic pumping
,
Colloids Surf., A
161
,
89
102
.
137.
Moorthy
J
,
Khoury
C
,
Moore
JS
, and
Beebe
DJ
(
2001
),
Active control of electroosmotic flow in microchannels using light
,
Sens. Actuators B
75
,
223
229
.
138.
Morf
WE
,
Guenat
OT
, and
de Rooij
NF
(
2001
),
Partial electroosmotic pumping in complex capillary systems – Part 1: Principles and general theoretical approach
,
Sens. Actuators B
72
,
266
272
.
139.
Guenat
OT
,
Ghiglione
D
,
Morf
WE
, and
de Rooij
NF
(
2001
),
Partial electroosmotic pumping in complex capillary systems – Part 2: Fabrication and application of a micro total analysis system (TAS) suited for continuous volumetric nanotitrations
,
Sens. Actuators B
72
,
273
282
.
140.
Lemoff
AV
and
Lee
AP
(
2000
),
An AC magnetohydrodynamic micropump
,
Sens. Actuators B
63
,
178
185
.
141.
Heng K-H, Huang L, Wang W, and Murphy MC (1999), Development of a diffuser/nozzle type micropump based on magnetohydrodynamic (MHD) principle, Proc of SPIE, 3877, 66–73.
142.
Heng K-H, Wang W, Murphy MC, and Lian K (2000), UV-LIGA microfabrication and test of an AC-type micropump based on the magnetohydrodynamic (MHD) principle, Proc of SPIE, 4177, 174–184.
143.
Jang
J
and
Lee
SS
(
2000
),
Theoretical and experimental study of MHD (magnetohydrodynamic) micropump
,
Sens. Actuators, A
80
,
84
89
.
144.
Jun
TK
and
Kim
C-J
(
1998
),
Valveless pumping using traversing vapor bubbles in microchannels
,
J. Appl. Phys.
83
,
5658
5664
.
145.
Ozaki K (1995), Pumping mechanism using periodic phase changes of a fluid, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 31–36.
146.
Yuan
H
and
Prosperetti
A
(
1999
),
The pumping effect of growing and collapsing bubbles in a tube
,
J. Micromech. Microeng.
9
,
402
413
.
147.
Ory
E
,
Yuan
H
,
Prosperetti
A
,
Popinet
S
, and
Zaleski
S
(
1999
),
Growth and collapse of a vapor bubble in a small tube
,
Phys. Fluids
12
,
1268
1277
.
148.
Yuan
H
,
Oguz
HN
, and
Prosperetti
A
(
1999
),
Growth and collapse of a vapor bubble in a small tube
,
Int. J. Heat Mass Transfer
42
,
3643
3657
.
149.
Sammarco
TS
and
Burns
MA
(
1999
),
Thermocapillary pumping of discrete drops in microfabricated analysis devices
,
AIChE J.
45
,
350
366
.
150.
Sammarco
TS
and
Burns
MA
(
2000
),
Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices
,
J. Micromech. Microeng.
10
,
42
55
.
151.
Gurrum SP, Murthy S, and Joshi YK (2002), Numerical simulation of thermocapillary pumping using level set method, 5th ISHMT/ASME Heat and Mass Transfer Conf, Kolkata, India, 1–6.
152.
Geng
X
,
Yuan
H
,
Oguz
HN
, and
Prosperetti
A
(
2001
),
Bubble-based micropump for electrically conducting liquids
,
J. Micromech. Microeng.
11
,
270
276
.
153.
Tsai
J-H
and
Lin
L
(
2002
),
A thermal-bubble-actuated micronozzle-diffuser pump
,
J. Microelectromech. Syst.
11
,
665
671
.
154.
Song
YJ
and
Zhao
TS
(
2001
),
Modelling and test of a thermally-driven phase-change nonmechanical micropump
,
J. Micromech. Microeng.
11
,
713
719
.
155.
Moroney RM, White RM, and Howe RT (1991), Ultrasonically induced microtransport, IEEE MEMS, 277–282.
156.
Moroney
RM
,
White
RM
, and
Howe
RT
(
1991
),
Microtransport induced by ultrasonic Lamb waves
, Appl. Phys. Lett. 774–776.
157.
Moroney RM, White RM, and Howe RT (1991), Ultrasonically induced microtransport with cylindrical geometry, Micromechanical Sensors, Actuators, and Systems, ASME DSC 32, 181–190.
158.
Luginbuhl
P
,
Collins
SD
,
Racine
G-A
,
Gre´tillat
M-A
,
De Rooji
NF
,
Brooks
KG
and
Setter
N
(
1998
),
Ultrasonic flexural Lamb-wave actuators based on PZT thin film
,
Sens. Actuators, A
57
,
41
49
.
159.
Luginbuhl
P
,
Collins
SD
,
Racine
G-A
,
Gre´tillat
M-A
,
De Rooji
NF
,
Brooks
KG
and
Setter
N
(
1997
),
Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids
,
J. Microelectromech. Syst.
6
,
337
346
.
160.
Black JP and White RM (1999), Microfluidic applications of ultrasonic flexural plate waves, Transducers’ 99, Sendai, Japan, 1134–1136.
161.
Nguyen
NT
and
White
RM
(
1999
),
Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation
,
Sens. Actuators, A
77
,
229
236
.
162.
Nguyen
N-T
,
Meng
AH
,
Black
J
, and
White
RM
(
2000
),
Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps
,
Sens. Actuators, A
79
,
115
121
.
163.
Nguyen
N-T
and
White
RM
(
2000
),
Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1463
1471
.
164.
Matsumoto H and Colgate JE (1990), Preliminary investigation of micropumping based on electrical control of interfacial tension, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 105–110.
165.
Lee J and Kim C-J (1998), Microactuation by continuous electrowetting phenomenon and silicon deep RIE process, ASME MEMS (DSC), 66, 475–480.
166.
Pollack
MG
,
Fair
RB
, and
Shenderov
AD
(
2000
),
Electrowetting-based actuation of liquid droplets for microfluidic applications
,
Appl. Phys. Lett.
77
,
1725
1726
.
167.
Lee
J
and
Kim
C-J
(
2000
),
Surface-tension-driven microactuation based on continuous electrowetting
,
J. Microelectromech. Syst.
9
,
171
180
.
168.
Lee J, Moon H, Fowler J, Kim C-J, and Schoellhammer T (2001), Addressable micro liquid handling by electric control of surface tension, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 499–502.
169.
Namasivayam V, Kalyan H, Burke DT, Larson RG, and Burns MA (2000), Microfabricated valveless pump for delivering non-pulsatile flow, Proc of SPIE, 4177, 220–228.
170.
Tuckerman DB and Pease RFW (1981), High performance heat sinking for VLSI, IEEE Electron Device Letters, EDL-2, 126–129.
171.
Weisberg
A
,
Bau
HH
, and
Zemel
JN
(
1992
),
Analysis of microchannels for integrated cooling
,
Int. J. Heat Mass Transfer
35
,
2465
2474
.
You do not currently have access to this content.