This article presents a wide-ranging review of the simulation-based biological fluid dynamic models that have been developed and used in animal swimming and flying. The prominent feature of biological fluid dynamics is the relatively low Reynolds number, e.g. ranging from 100 to 104 for most insects; and, in general, the highly unsteady motion and the geometric variation of the object result in large-scale vortex flow structure. We start by reviewing literature in the areas of fish swimming and insect flight to address the usefulness and the difficulties of the conventional theoretical models, the experimental physical models, and the computational mechanical models. Then we give a detailed description of the methodology of the simulation-based biological fluid dynamics, with a specific focus on three kinds of modeling methods: (1) morphological modeling methods, (2) kinematic modeling methods, and (3) computational fluid dynamic methods. An extended discussion on the verification and validation problem is also presented. Next, we present an overall review on the most representative simulation-based studies in undulatory swimming and in flapping flight over the past decade. Then two case studies, of the tadpole swimming and the hawkmoth hovering analyses, are presented to demonstrate the context for and the feasibility of using simulation-based biological fluid dynamics to understanding swimming and flying mechanisms. Finally, we conclude with comments on the effectiveness of the simulation-based methods, and also on its constraints.

1.
Lighthill
,
M. J.
, 1969, “
Hydrodynamics of Aquatic Animal Locomotion
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
413
416
.
2.
Lighthill
,
M. J.
, 1975,
Mathematical Biofluid-dynamics
,
SIAM
, Philadelphia.
3.
Wu
,
T. Y.
, 1971, “
Hydrodynamics of Swimming Propulsion. Part 3. Swimming and Optimum Movements of Slender Fish With Side Fins
,”
J. Fluid Mech.
0022-1120,
46
(
3
), pp.
545
568
.
4.
Newman
,
J. N.
, 1973, “
The Force on a Slender Fish-Like Body
,”
J. Fluid Mech.
0022-1120,
58
(
4
), pp.
689
702
.
5.
Cheng
,
J. Y.
,
Zhuang
,
L. X.
, and
Tong
,
T. B.
, 1991, “
Analysis of Swimming Three-Dimensional Waving Plates
,”
J. Fluid Mech.
0022-1120,
232
, pp.
341
355
.
6.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
, 1993, “
Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion
,”
J. Fluids Struct.
0889-9746,
7
, pp.
205
224
.
7.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
, 1995, “
An Efficient Swimming Machine
,”
Sci. Am.
0036-8733,
3
, pp.
1
26
.
8.
Domenici
,
P.
, and
Blake
,
R.
, 1997, “
The Kinematics and Performance of Fish Fast-Start Swimming
,”
J. Exp. Biol.
0022-0949,
200
, pp.
1165
1178
.
9.
Druker
,
E. G.
, and
Lauder
,
J. V. J.
, 1999, “
Locomotor Forces on a Swimming Fish. Three-Dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image Velocimetry
,”
J. Exp. Biol.
0022-0949,
202
, pp.
2393
2412
.
10.
Druker
,
E. G.
, and
Lauder
,
J. V. J.
, 2001, “
Wake Dynamics and Fluid Forces of Turning Maneuvers in Sunfish Fish
,”
J. Exp. Biol.
0022-0949,
202
, pp.
2393
2412
.
11.
Johnson
,
T. P.
,
Cullum
,
A. J.
, and
Bennett
,
A. F.
, 1998, “
Partitioning the Effects of Temperature and Kinematic Viscosity on the C-Start Performance of Adult Fishes
,”
J. Exp. Biol.
0022-0949,
201
, pp.
2045
2051
.
12.
Gordon
,
M. S.
,
Hove
,
J. R.
, and
Bartol
,
I. K.
, 2002, “
Dynamics and Energetics of Animal Swimming and Flying: Introduction
,”
Integr. Comp. Bio
,
42
(
5
), pp.
960
963
.
13.
Bartol
,
I. K.
,
Gordon
,
M. S.
,
Gharib
,
M.
,
Hove
,
J. R.
,
Webb
,
P. W.
, and
Weihs
,
D.
, 2002, “
Flow Patterns Around the Carapaces of Rigid-Bodied, Multi-Propulsor Boxfishes (Teleostei; Ostraciidae)
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
971
980
.
14.
Muller
,
U. K.
,
Stamhuis
,
E. J.
, and
Videler
,
J. J.
, 2002, “
Riding the Waves: The Role of the Body Wave in Undulatory Fish Swimming
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
981
987
.
15.
Videler
,
J. J.
,
Stamhuis
,
E. J.
,
Muller
,
U. K.
, and
van Duren
,
L. A.
, 2002, “
The Scaling and Structure of Aquatic Animal Wakes
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
988
996
.
16.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 2002, “
Wake Dynamics and Locomotor Function in Fishes: Interpreting Evolutionary Patterns in Pectoral Fin Design
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
997
1008
.
17.
Lauder
,
G. V.
,
Nauen
,
J. C.
, and
Drucker
,
E. G.
, 2002, “
Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-Finned Fishes
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1009
1017
.
18.
Gharib
,
M.
,
Pereira
,
F.
,
Dabiri
,
D.
,
Hove
,
J. R.
, and
Modarress
,
D.
, 2002, “
Quantitative Flow Visualization: Toward a Comprehensive Flow Diagnostic Tool
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
964
970
.
19.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
,
Zhu
,
Q.
,
Beal
,
D. N.
,
Hover
,
F. S.
, and
Yue
,
D. K. P.
, 2002, “
Vorticity Control in Fish-Like Propulsion and Maneuvering
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1026
1031
.
20.
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2002, “
Kinematics, Dynamics, and Energetics of Rowing and Flapping Propulsion in Fishes
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1032
1043
.
21.
Alexander
,
R. M.
, 2002, “
The Merits and Implications of Travel by Swimming, Flight and Running for Animals of Different Sizes
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1060
1064
.
22.
O’dor
,
R.
, 2002, “
Telemetered Cephalopod Energetics: Swimming, Soaring, and Blimping
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1065
1070
.
23.
Weihs
,
D.
, 2002, “
Dynamics of Dolphin Porpoising Revisited
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1071
1078
.
24.
Schultz
,
W. W.
, and
Webb
,
P. W.
, 2002, “
Power Requirements of Swimming: Do New Methods Resolve Old Questions?
Integr. Comp. Bio.
,
42
(
5
), pp.
1018
1025
.
25.
Weis-Fogh
,
T.
, 1972, “
Energetic of Hovering Flight in Hummingbirds and in Drosophila
,”
J. Exp. Biol.
0022-0949,
56
, pp.
79
104
.
26.
Maxworthy
,
T.
, 1979, “
Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the ‘Fling’
,”
J. Fluid Mech.
0022-1120,
93
, pp.
47
63
.
27.
Azuma
,
A.
, 1983, “
Local Momentum and Local Circulation Methods for Fixed, Rotary and Beating Wings
,” Reports of the Institute of Interdisciplinary Research, Faculty of Engineering, University of Tokyo.
28.
Pennycuick
,
C. J.
, 1989,
Bird Flight Performance, A Practical Calculation Manual
,
Oxford University Press
, Oxford.
29.
Norberg
,
U. M.
, 1990,
Vertebrate Flight
,
Springer-Verlag
, Berlin.
30.
Spedding
,
G. R.
, 1992, “
The Aerodynamics of Flight
,” in
Adv. Comp. Physiol. The Mechanics of Animal Locomotion
,
R. McN.
Alexander
, ed.,
Springer-Verlag
, Berlin, p.
51
.
31.
Ellington
,
C. P.
, 1995, “
Unsteady Aerodynamics of Insect Flight
,” Biological Fluid Dynamics,
C. P.
Ellington
and
T. J.
Pedley
, eds.,
Symp. Soc. Exp. Biol.
0081-1386,
49
, pp.
109
129
.
32.
Cloupeau
,
M.
,
Devilliers
,
J. F.
, and
Uevezeaux
,
D.
, 1979, “
Direct Measurements of Instantaneous Lift in Desert Locust; Comparison with Jensen’s Experiments on Detached Wings
,”
J. Exp. Biol.
0022-0949,
180
, pp.
1
15
.
33.
Wilkin
,
P. J.
, and
Williams
,
H. M.
, 1993, “
Comparison of the Aerodynamic Forces on a Flying Sphingid Moth with those Predicted by Quasi-Steady Theory
,”
Physiol. Zool.
0031-935X,
66
, pp.
1015
1044
.
34.
Ellington
,
C. P.
,
Van Den berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L. R.
, 1998, “
Leading-Edge Vortices in Insect Flight
,”
Nature (London)
0028-0836,
384
, pp.
626
630
.
35.
Dickinson
,
M. H.
,
Lehmann
,
F. O.
, and
Sane
,
S. P.
, 1999, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
0036-8075,
284
, pp.
1954
1960
.
36.
Birch
,
J. M.
, and
Dickinson
,
M. H.
, 2001, “
Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings
,”
Nature (London)
0028-0836,
412
, pp.
722
725
.
37.
Fry
,
S. N.
,
Sayaman
,
R.
, and
Dickinson
,
M. H.
, 2003, “
Aerodynamics of Free-Flight Maneuvers in Drosophila
,”
Science
0036-8075,
300
(
18
), pp.
495
498
.
38.
Daniel
,
T. L.
, and
Combes
,
S. S.
, 2002, “
Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces
?”
Integr. Comp. Bio.
,
42
(
5
), pp.
1044
1049
.
39.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
, 1999, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. Sci.
0376-0421,
35
(
5
), pp.
455
506
.
40.
Gustafson
,
K.
, and
Leben
,
R.
, 1991, “
Computation of Dragonfly Aerodynamics
,”
Comput. Phys. Commun.
0010-4655,
65
, pp.
121
132
.
41.
Freymuth
,
P.
, 1990, “
Thrust Generation by an Airfoil in Hover Modes
,”
Exp. Fluids
0723-4864,
9
, pp.
17
24
.
42.
Liu
,
H.
, 2002, “
Computational Biological Fluid Dynamics: Digitizing and Visualizing Animal Swimming and Flying
,”
Integr. Comp. Bio.
,
42
(
5
), pp.
1050
1059
.
43.
Videler
,
J. J.
, 1993,
Fish Swimming
,
Chapman & Hall
, London.
44.
Yokota
,
H.
et al.
, 2002, “
Development of Precise Digitizer and Digitizing of Human Eyeball
,”
Proceedings of the RIKEN Symposium on Computational Biomechanics
, pp.
1
8
.
45.
Liu
,
H.
, and
Kawachi
,
K.
, 1996, “
A New Method of Streakline Tracing for Time-Periodic Biofluids
,”
J. Flow Visualization & Image Processing
,
3
, pp.
299
310
.
46.
Liu
,
H.
, and
Kawachi
,
K.
, 1998, “
A Numerical Study of Insect Flight
,”
J. Comput. Phys.
0021-9991,
146
(
1
), pp.
124
156
.
47.
Liu
,
H.
, and
Yamaguchi
,
T.
, 1999, “
Validation in CFD Modeling of Biological and Physiological Flows
,”
ASME-FEDSM99-6787
.
48.
Liu
,
H.
, and
Kawachi
,
K.
, 1999, “
A Numerical Study of Undulatory Swimming
,”
J. Comput. Phys.
0021-9991,
155
, pp.
223
247
.
49.
Liu
,
H.
,
Ellington
,
C. P.
,
Kawachi
,
K.
,
Van Den Berg
,
C.
, and
Willmott
,
A. P.
, 1998, “
A Computational Fluid Dynamic Study of Hawkmoth Hovering
,”
J. Exp. Biol.
0022-0949,
201
, pp.
461
477
.
50.
Liu
,
H.
,
Wassersug
,
R.
, and
Kawachi
,
K.
, 1996, “
A Computational Fluid Dynamic Study of Tadpole Swimming
,”
J. Exp. Biol.
0022-0949,
199
(
6
), pp.
1024
1260
.
51.
Liu
,
H.
,
Wassersug
,
R.
, and
Kawachi
,
K.
, 1997, “
Three-Dimensional Hydrodynamics of Tadpole Swimming
,”
J. Exp. Biol.
0022-0949,
200
(
4
), pp.
2356
2368
.
52.
Carling
,
J. C.
,
Williams
,
T. L.
, and
Bowtell
,
Graham
, 1997, “
Self-Propelled Anguilliform Swimming
,”
J. Exp. Biol.
0022-0949,
201
, pp.
120
135
.
53.
Vest
,
M. S.
, and
Katz
,
J.
, 1996, “
Unsteady Aerodynamic Model of Flapping Wings
,”
AIAA J.
0001-1452,
34
(
7
), pp.
1435
1440
.
54.
Smith
,
M. J. C.
, 1996, “
Simulation Moth Wing Aerodynamics: Toward the Development of Flapping-Wing Technology
,”
AIAA J.
0001-1452,
34
(
7
), pp.
1348
1355
.
55.
Wang
,
Z. J.
, 2000, “
Vortex Shedding and Frequency Selection in Flapping Flight
,”
J. Fluid Mech.
0022-1120,
410
, pp.
323
341
.
56.
Lian
,
Y.
, and
Shyy
,
W.
, 2003, “
Three-Dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Applications
,”
AIAA 2003-1726
.
57.
Liu
,
H.
, and
Kawachi
,
K.
, 2001, “
Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number
,”
Prog. Astronaut. Aeronaut.
0079-6050,
195
, pp.
275
285
.
58.
Ramamurti
,
R.
, and
Sandberg
,
W. C.
, 2002, “
A 3-D Computational Study of Aerodynamic Mechanisms of Insect Flight
,”
J. Exp. Biol.
0022-0949,
205
, pp.
1507
1518
.
59.
Ramamurti
,
R.
,
Sandberg
,
W. C.
,
Löhner
,
R.
,
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2002, “
Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: Three-Dimensional Unsteady Computations with Fin Deformation
,”
J. Exp. Biol.
0022-0949,
205
(
19
), pp.
2997
3008
.
60.
Sun
,
M.
, and
Tang
,
J.
, 2002, “
Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion
,”
J. Exp. Biol.
0022-0949,
205
, pp.
55
70
.
61.
Sun
,
M.
, and
Tang
,
J.
, 2002, “
Lift and Power Requirements of Hovering Flight in Drosophia virilis
,”
J. Exp. Biol.
0022-0949,
205
, pp.
2413
2427
.
62.
Lehmann
,
F. O.
, and
Dickinsn
,
M. H.
, 1997, “
The Changes in Power Requirements and Muscle Efficiency During Elevated Force Production in the Fruit Fly Drosphila Melangogaster
,”
J. Exp. Biol.
0022-0949,
200
, pp.
1133
1143
.
63.
Wang
,
Z. J.
,
Birch
,
J. M.
, and
Dickinson
,
M. H.
, 2004, “
Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments
,”
J. Exp. Biol.
0022-0949,
207
, pp.
449
460
.
You do not currently have access to this content.