Mechanics at the nanoscale is radically different from mechanics at the macroscale. Atomistic simulations have revealed this important fact, and experiments are being performed to support it. Specifically, in situ testing is being performed by researchers using different approaches with different material systems to interrogate the material at the nanoscale and prove or disprove many of the proposed models. This paper attempts to provide a fairly comprehensive review of the in situ testing that is being performed at the nanoscale, together with a brief description of the models that in situ testing are being used to verify. This review paper intends to primarily provide a broad snapshot of in situ testing of different nanocarbon-based polymeric nanocomposite materials.

References

1.
Burda
,
C.
,
Chen
,
X.
,
Narayanan
,
R.
, and
El-Sayed
,
M. A.
,
2005
, “
Chemistry and Properties of Nanocrystals of Different Shapes
,”
Chem. Rev.
,
105
(
4
), pp.
1025
1102
.
2.
Xu
,
M.
,
Liang
,
T.
,
Shi
,
M.
, and
Chen
,
H.
,
2013
, “
Graphene-Like Two-Dimensional Materials
,”
Chem. Rev.
,
113
(
5
), pp.
3766
3798
.
3.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2015
, “
Fracture of Graphene: A Review
,”
Int. J. Fract.
,
196
(
1
), pp.
1
31
.
4.
Sun
,
L.
,
Gibson
,
R. F.
,
Gordaninejad
,
F.
, and
Suhr
,
J.
,
2009
, “
Energy Absorption Capability of Nanocomposites: A Review
,”
Compos. Sci. Technol.
,
69
(
14
), pp.
2392
2409
.
5.
Daniels
,
C.
,
Horning
,
A.
,
Phillips
,
A.
,
Massote
,
D. V. P.
,
Liang
,
L.
,
Bullard
,
Z.
,
Sumpter
,
B. G.
, and
Meunier
,
V.
,
2015
, “
Elastic, Plastic, and Fracture Mechanisms in Graphene Materials
,”
J. Phys.: Condens. Matter
,
27
(
37
), p.
373002
.
6.
Libonati
,
F.
, and
Buehler
,
M. J.
,
2017
, “
Advanced Structural Materials by Bioinspiration
,”
Adv. Eng. Mater.
,
19
(
5
), p.
1600787
.
7.
Morits
,
M.
,
Verho
,
T.
,
Sorvari
,
J.
,
Liljeström
,
V.
,
Kostiainen
,
M. A.
,
Gröschel
,
A. H.
, and
Ikkala
,
O.
,
2017
, “
Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocomposites
,”
Adv. Funct. Mater.
,
27
(
10
), p. 1605378.
8.
Grossman
,
M.
,
Bouville
,
F.
,
Erni
,
F.
,
Masania
,
K.
,
Libanori
,
R.
, and
Studart
,
A. R.
,
2017
, “
Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-Like Composite Materials
,”
Adv. Mater.
,
29
(
8
), p.
1605039
.
9.
Mirkhalaf
,
M.
,
Dastjerdi
,
A. K.
, and
Barthelat
,
F.
,
2014
, “
Overcoming the Brittleness of Glass Through Bio-Inspiration and Micro-Architecture
,”
Nat. Commun.
,
5
, p.
3166
.
10.
Tertuliano
,
O. A.
, and
Greer
,
J. R.
,
2016
, “
The Nanocomposite Nature of Bone Drives Its Strength and Damage Resistance
,”
Nat. Mater.
,
15
(
11
), pp.
1195
1202
.
11.
Winey
,
K. I.
, and
Vaia
,
R. A.
,
2007
, “
Polymer Nanocomposites
,”
MRS Bull.
,
32
(
4
), pp.
314
322
.
12.
Jia
,
J.
,
Sun
,
X.
,
Lin
,
X.
,
Shen
,
X.
,
Mai
,
Y.-W.
, and
Kim
,
J.-K.
,
2014
, “
Exceptional Electrical Conductivity and Fracture Resistance of 3D Interconnected Graphene Foam/Epoxy Composites
,”
ACS Nano
,
8
(
6
), pp.
5774
5783
.
13.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.
14.
Eremeyev
,
V. A.
,
2016
, “
On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects
,”
Acta Mech.
,
227
(
1
), pp.
29
42
.
15.
Rens
,
R.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
MacKintosh
,
F. C.
, and
Sharma
,
A.
,
2016
, “
Nonlinear Mechanics of Athermal Branched Biopolymer Networks
,”
J. Phys. Chem. B
,
120
(
26
), pp.
5831
5841
.
16.
Batistakis
,
C.
,
Michels
,
M. A. J.
, and
Lyulin
,
A. V.
,
2014
, “
Confinement-Induced Stiffening of Thin Elastomer Films: Linear and Nonlinear Mechanics Vs Local Dynamics
,”
Macromolecules
,
47
(
14
), pp.
4690
4703
.
17.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Eduardo Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
18.
Tapasztó
,
L.
,
Dumitrica
,
T.
,
Kim
,
S. J.
,
Nemes-Incze
,
P.
,
Hwang
,
C.
, and
Biró
,
L. P.
,
2012
, “
Breakdown of Continuum Mechanics for Nanometre-Wavelength Rippling of Graphene
,”
Nat. Phys.
,
8
(
10
), pp.
739
742
.
19.
Withers
,
P. J.
,
2015
, “
Fracture Mechanics by Three-Dimensional Crack-Tip Synchrotron X-Ray Microscopy
,”
Philos. Trans. R. Soc. A
,
373
(
2036
), p. 20130157.
20.
Gibson
,
R. F.
,
2010
, “
A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures
,”
Compos. Struct.
,
92
(
12
), pp.
2793
2810
.
21.
Sharon
,
E.
, and
Fineberg
,
J.
,
1999
, “
Confirming the Continuum Theory of Dynamic Brittle Fracture for Fast Cracks
,”
Nature
,
397
(
6717
), pp.
333
335
.
22.
Aranson
,
I. S.
,
Kalatsky
,
V. A.
, and
Vinokur
,
V. M.
,
2000
, “
Continuum Field Description of Crack Propagation
,”
Phys. Rev. Lett.
,
85
(
1
), pp.
118
121
.
23.
Schatz
,
G. C.
,
2007
, “
Using Theory and Computation to Model Nanoscale Properties
,”
Proc. Natl. Acad. Sci.
,
104
(
17
), pp.
6885
6892
.
24.
Shao
,
C.
, and
Keten
,
S.
,
2015
, “
Stiffness Enhancement in Nacre-Inspired Nanocomposites Due to Nanoconfinement
,”
Sci. Rep.
,
5
, p.
16452
.
25.
Egan
,
P.
,
Sinko
,
R.
,
LeDuc
,
P. R.
, and
Keten
,
S.
,
2015
, “
The Role of Mechanics in Biological and Bio-Inspired Systems
,”
Nat. Commun.
,
6
, p.
7418
.
26.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of β-Sheet Crystals in Silk
,”
Nat. Mater.
,
9
(
4
), pp.
359
367
.
27.
Shimada
,
T.
,
Ouchi
,
K.
,
Chihara
,
Y.
, and
Kitamura
,
T.
,
2015
, “
Breakdown of Continuum Fracture Mechanics at the Nanoscale
,”
Sci. Rep.
,
5
, p.
8596
.
28.
Yin
,
H.
,
Qi
,
H. J.
,
Fan
,
F.
,
Zhu
,
T.
,
Wang
,
B.
, and
Wei
,
Y.
,
2015
, “
Griffith Criterion for Brittle Fracture in Graphene
,”
Nano Lett.
,
15
(
3
), pp.
1918
1924
.
29.
Huang
,
S.
,
Zhang
,
S.
,
Belytschko
,
T.
,
Terdalkar
,
S. S.
, and
Zhu
,
T.
,
2009
, “
Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization
,”
J. Mech. Phys. Solids
,
57
(
5
), pp.
840
850
.
30.
Sahu
,
R.
, and
Anup
,
S.
,
2016
, “
Molecular Dynamics Study of Toughening Mechanisms in Nano-Composites as a Function of Structural Arrangement of Reinforcements
,”
Mater. Des.
,
100
, pp.
132
140
.
31.
Gao
,
H.
,
Ji
,
B.
,
Jager
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci.
,
100
(
10
), pp.
5597
5600
.
32.
Mielke
,
S. L.
,
Belytschko
,
T.
, and
Schatz
,
G. C.
,
2007
, “
Nanoscale Fracture Mechanics
,”
Annu. Rev. Phys. Chem.
,
58
(
1
), pp.
185
209
.
33.
Tasis
,
D.
,
Tagmatarchis
,
N.
,
Bianco
,
A.
, and
Prato
,
M.
,
2006
, “
Chemistry of Carbon Nanotubes
,”
Chem. Rev.
,
106
(
3
), pp.
1105
1136
.
34.
Allen
,
M. J.
,
Tung
,
V. C.
, and
Kaner
,
R. B.
,
2010
, “
Honeycomb Carbon: A Review of Graphene
,”
Chem. Rev.
,
110
(
1
), pp.
132
145
.
35.
Basu-Dutt
,
S.
,
Minus
,
M. L.
,
Jain
,
R.
,
Nepal
,
D.
, and
Kumar
,
S.
,
2012
, “
Chemistry of Carbon Nanotubes for Everyone
,”
J. Chem. Educ.
,
89
(
2
), pp.
221
229
.
36.
Georgakilas
,
V.
,
Otyepka
,
M.
,
Bourlinos
,
A. B.
, Chandra V.,
Kim
,
N.
,
Kemp
,
K. C.
,
Hobza
,
P.
,
Zboril
,
R.
, and
Kim
,
K. S.
,
2012
, “
Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications
,”
Chem. Rev.
,
112
(
11
), pp.
6156
6214
.
37.
Ma
,
P.-C.
,
Siddiqui
,
N. A.
,
Marom
,
G.
, and
Kim
,
J.-K.
,
2010
, “
Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review
,”
Composites, Part A
,
41
(
10
), pp.
1345
1367
.
38.
Shtein
,
M.
,
Nadiv
,
R.
,
Lachman
,
N.
,
Wagner
,
H. D.
, and
Regev
,
O.
,
2013
, “
Fracture Behavior of Nanotube–Polymer Composites: Insights on Surface Roughness and Failure Mechanism
,”
Compos. Sci. Technol.
,
87
, pp.
157
163
.
39.
Wang
,
S.
,
Yang
,
B.
,
Yuan
,
J.
,
Si
,
Y.
, and
Chen
,
H.
,
2015
, “
Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a Defective Graphene: Cases of 5–8–5 Defects
,”
Sci. Rep.
,
5
, p.
14957
.
40.
Datta
,
D.
,
Nadimpalli
,
S. P. V.
,
Li
,
Y.
, and
Shenoy
,
V. B.
,
2015
, “
Effect of Crack Length and Orientation on the Mixed-Mode Fracture Behavior of Graphene
,”
Extreme Mech. Lett.
,
5
, pp.
10
17
.
41.
Zhang
,
P.
,
Ma
,
L.
,
Fan
,
F.
,
Zeng
,
Z.
,
Peng
,
C.
,
Loya
,
P. E.
,
Liu
,
Z.
,
Gong
,
Y.
,
Zhang
,
J.
,
Zhang
,
X.
,
Ajayan
,
P. M.
,
Zhu
,
T.
, and
Lou
,
J.
,
2014
, “
Fracture Toughness of Graphene
,”
Nat. Commun.
,
5
, p.
3782
.
42.
Wei
,
X.
,
Mao
,
L.
,
Soler-Crespo
,
R. A.
,
Paci
,
J. T.
,
Huang
,
J.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2015
, “
Plasticity and Ductility Graphene Oxide Through a Mechanochemically Induced Damage Tolerance Mechanism
,”
Nat. Commun.
,
6
, p.
8029
.
43.
Tanga
,
L.-C.
,
Wan
,
Y.-J.
,
Yan
,
D.
,
Pei
,
Y.-B.
,
Zhao
,
L.
,
Li
,
Y.-B.
,
Wu
,
L.-B.
,
Jiang
,
J.-X.
, and
Lai
,
G.-Q.
,
2013
, “
The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites
,”
Carbon
,
60
, pp.
16
27
.
44.
Bortz
,
D. R.
,
Heras
,
E. G.
, and
Martin-Gullon
,
I.
,
2012
, “
Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites
,”
Macromolecules
,
45
(
1
), pp.
238
245
.
45.
Chandrasekaran
,
S.
,
Sato
,
N.
,
Tölle
,
F.
,
Mülhaupt
,
R.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2014
, “
Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites
,”
Compos. Sci. Technol.
,
97
, pp.
90
99
.
46.
Kumar
,
A.
,
Li
,
S.
,
Roy
,
S.
,
King
,
J. A.
, and
Odegard
,
G. M.
,
2015
, “
Fracture Properties of Nanographene Reinforced EPON 862 Thermoset Polymer System
,”
Compos. Sci. Technol.
,
114
, pp.
87
93
.
47.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.
48.
Domun
,
N.
,
Hadavinia
,
H.
,
Zhang
,
T.
,
Sainsbury
,
T.
,
Liaghata
,
G. H.
, and
Vahid
,
S.
,
2015
, “
Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials—A Review of the Current Status
,”
Nanoscale
,
7
(
23
), pp.
10294
10329
.
49.
Park
,
Y. T.
,
Qian
,
Y.
,
Chan
,
C.
,
Suh
,
T.
,
Nejhad
,
M. G.
,
Macosko
,
C. W.
, and
Stein
,
A.
,
2015
, “
Epoxy Toughening With Low Graphene Loading
,”
Adv. Funct. Mater.
,
25
(
4
), pp.
575
585
.
50.
Eksik
,
O.
,
Gao
,
J.
,
Shojaee
,
S. A.
,
Thomas
,
A.
,
Chow
,
P.
,
Bartolucci
,
S. F.
,
Lucca
,
D. A.
, and
Koratkar
,
N.
,
2014
, “
Epoxy Nanocomposites With Two-Dimensional Transition Metal Dichalcogenide Additives
,”
ACS Nano
,
8
(
5
), pp.
5282
5289
.
51.
Haba
,
D.
,
Brunner
,
A. J.
, and
Pinter
,
G.
,
2015
, “
Dispersion of Fullerene-Like WS2 Nanoparticles Within Epoxy and the Resulting Fracture Mechanics
,”
Compos. Sci. Technol.
,
119
, pp.
55
61
.
52.
Li
,
X.
, and
Zhu
,
H.
,
2015
, “
Two-Dimensional MoS2: Properties, Preparation, and Applications
,”
J. Materiomics
,
1
(
1
), pp.
33
44
.
53.
Legros, M., Gianola, D., and Motz, C., 2010, “
Quantitative In Situ Mechanical Testing in Electron Microscopes
,”
MRS Bull.
,
35
(5), pp. 354–360.
54.
Mijović
,
J.
,
Andjelić
,
S.
, and
Kenny
,
J. M.
,
1996
, “
In Situ Real-Time Monitoring of Epoxy/Amine Kinetics by Remote Near Infrared Spectroscopy
,”
Polym. Adv. Technol.
,
7
(
1
), pp.
1
16
.
55.
Haque
,
M. A.
, and
Saif
,
M. T. A.
,
2002
, “
In-Situ Tensile Testing of Nano-Scale Specimens in SEM and TEM
,”
Exp. Mech.
,
42
(
1
), pp.
123
128
.
56.
Lagattu
,
F.
,
Bridier
,
F.
,
Villechaise
,
P.
, and
Brillaud
,
J.
,
2006
, “
In-Plane Strain Measurements on a Microscopic Scale by Coupling Digital Image Correlation and an In Situ SEM Technique
,”
Mater. Charact.
,
56
(
1
), p.
10
.
57.
Li
,
X.
,
Xu
,
Z.-H.
, and
Wang
,
R.
,
2006
, “
In Situ Observation of Nanograin Rotation and Deformation in Nacre
,”
Nano Lett.
,
6
(
10
), pp.
2301
2304
.
58.
Zhou
,
J.
,
Komvopoulos
,
K.
, and
Minor
,
A. M.
,
2006
, “
Nanoscale Plastic Deformation and Fracture of Polymers Studied by In Situ Nanoindentation in a Transmission Electron Microscope
,”
Appl. Phys. Lett.
,
88
(
18
), p.
181908
.
59.
Warren
,
O. L.
,
Shan
,
Z.
,
Asif
,
S. S.
,
Stach
,
E. A.
,
Morris
,
J. W.
, and
Minor
,
A. M.
,
2007
, “
In Situ Nanoindentation in the TEM
,”
Mater. Today
,
10
(
4
), pp.
59
60
.
60.
Lang
,
U.
, and
Dual
,
J.
,
2009
, “
Microtensile Tests Using In Situ Atomic Force Microscopy
,”
Applied Scanning Probe Methods XII
,
B.
Bhushan
and
H.
Fuchs
, eds.,
Springer
,
Berlin
, pp.
165
182
.
61.
Gianola
,
D. S.
,
Sedlmayr
,
A.
,
Mönig
,
R.
,
Volkert
,
C. A.
,
Major
,
R. C.
,
Cyrankowski
,
E.
,
Asif
,
S. A. S.
,
Warren
,
O. L.
, and
Kraft
,
O.
,
2011
, “
In Situ Nanomechanical Testing in Focused Ion Beam and Scanning Electron Microscopes
,”
Rev. Sci. Instrum.
,
82
(
6
), p.
063901
.
62.
Nili
,
H.
,
Kalantar-zadeh
,
K.
,
Bhaskaran
,
M.
, and
Sriram
,
S.
,
2013
, “
In Situ Nanoindentation: Probing Nanoscale Multifunctionality
,”
Prog. Mater. Sci.
,
58
(
1
), pp.
1
29
.
63.
Allison
,
P. G.
,
Moser
,
R. D.
,
Schirer
,
J. P.
,
Martens
,
R. L.
,
Jordon
,
J. B.
, and
Chandler
,
M. Q.
,
2014
, “
In-Situ Nanomechanical Studies of Deformation and Damage Mechanisms in Nanocomposites Monitored Using Scanning Electron Microscopy
,”
Mater. Lett.
,
131
, pp.
313
316
.
64.
Bufford
,
D.
,
Liu
,
Y.
,
Wang
,
J.
,
Wang
,
H.
, and
Zhang
,
X.
,
2014
, “
In Situ Nanoindentation Study on Plasticity and Work Hardening in Aluminium With Incoherent Twin Boundaries
,”
Nat. Commun.
,
5
, p.
4864
.
65.
Han
,
X.
,
Wang
,
L.
,
Yue
,
Y.
, and
Zhang
,
Z.
,
2015
, “
In Situ Atomic Scale Mechanical Microscopy Discovering the Atomistic Mechanisms of Plasticity in Nano-Single Crystals and Grain Rotation in Polycrystalline Metals
,”
Ultramicroscopy
,
151
, pp.
94
100
.
66.
Ramachandramoorthy
,
R.
,
Bernal
,
R.
, and
Espinosa
,
H. D.
,
2015
, “
Pushing the Envelope of In Situ Transmission Electron Microscopy
,”
ACS Nano
,
9
(
5
), pp.
4675
4685
.
67.
Wang
,
B.
, and
Haque
,
M. A.
,
2015
, “
In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures
,”
JOM
,
67
(
8
), pp.
1713
1720
.
68.
Thomas
,
C.
,
Ferreiro
,
V.
,
Coulon
,
G.
, and
Seguela
,
R.
,
2007
, “
In Situ AFM Investigation of Crazing in Polybutene Spherulites Under Tensile Drawing
,”
Polymer
,
48
(
20
), pp.
6041
6048
.
69.
Hang
,
F.
,
Lu
,
D.
,
Bailey
,
R. J.
,
Jimenez-Palomar
,
I.
,
Stachewicz
,
U.
,
Cortes-Ballesteros
,
B.
,
Davies
,
M.
,
Zech
,
M.
,
Bödefeld
,
C.
, and
Barber
,
A. H.
,
2011
, “
In Situ Tensile Testing of Nanofibers by Combining Atomic Force Microscopy and Scanning Electron Microscopy
,”
Nanotechnology
,
22
(
36
), p.
365708
.
70.
Kahloun
,
C.
,
Monnet
,
G.
,
Queyreau
,
S.
,
Le
,
L. T.
, and
Franciosi
,
P.
,
2016
, “
A Comparison of Collective Dislocation Motion From Single Slip Quantitative Topographic Analysis During In-Situ AFM Room Temperature Tensile Tests on Cu and Feα Crystals
,”
Int. J. Plast.
,
84
, pp.
277
298
.
71.
Wang
,
C.
,
Frogley
,
M. D.
,
Cinque
,
G.
,
Liu
,
L. Q.
, and
Barber
,
A. H.
,
2013
, “
Deformation and Failure Mechanisms in Graphene Oxide Paper Using In Situ Nanomechanical Tensile Testing
,”
Carbon
,
63
, pp.
471
477
.
72.
Huang
,
H.
, and
Zhao
,
H.
,
2014
, “
In Situ Nanoindentation and Scratch Testing Inside Scanning Electron Microscopes: Opportunities and Challenges
,”
Sci. Adv. Mater.
,
6
(
5
), pp.
875
889
.
73.
Deuschle
,
J. K.
,
Buerki
,
G.
,
Deuschle
,
H. M.
,
Enders
,
S.
,
Michler
,
J.
, and
Arzt
,
E.
,
2008
, “
In Situ Indentation Testing of Elastomers
,”
Acta Mater.
,
56
(
16
), pp.
4390
4401
.
74.
Zhu
,
Y.
, and
Espinosa
,
H. D.
,
2005
, “
An Electromechanical Material Testing System for In Situ Electron Microscopy and Applications
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
41
), pp.
14503
14508
.
75.
Hosseinian
,
E.
, and
Pierron
,
O. N.
,
2013
, “
Quantitative In Situ TEM Tensile Fatigue Testing on Nanocrystalline Metallic Ultrathin Films
,”
Nanoscale
,
5
(
24
), pp.
12532
12541
.
76.
Wang
,
L.
,
Zhang
,
Z.
, and
Han
,
X.
,
2013
, “
In Situ Experimental Mechanics of Nanomaterials at the Atomic Scale
,”
NPG Asia Mater.
,
5
, p.
e40
.
77.
Xu
,
T.
, and
Sun
,
L.
,
2015
, “
Dynamic In-Situ Experimentation on Nanomaterials at the Atomic Scale
,”
Small
,
11
(
27
), pp.
3247
3262
.
78.
LaGrange, T., Reed, B. W., Santala, M. K., McKeown, J. T., Kulovits, A., Wiezorek, J. M., Nikolova, L., Rosei, F., Siwick, B. J., and Campbell, G. H.,
2012
, “
Approaches for Ultrafast Imaging of Transient Materials Processes in the Transmission Electron Microscope
,”
Micron
,
43
(
11
), pp.
1108
1120
.
79.
Fan
,
X.
, and
Diao
,
D.
,
2016
, “
The Adhesion Behavior of Carbon Coating Studied by Re-Indentation During In Situ TEM Nanoindentation
,”
Appl. Surf. Sci.
,
362
, pp.
49
55
.
80.
Mu, M., Osswald, S., Gogotsi, Y., and Winey, K. I.,
2009
, “
An In Situ Raman Spectroscopy Study of Stress Transfer Between Carbon Nanotubes and Polymer
,”
Nanotechnology
,
20
(
33
), p.
335703
.
81.
Humbert, S., Lame, O., Chenal, J. M., Rochas, C., and Vigier, G.,
2010
, “
New Insight on Initiation of Cavitation in Semicrystalline Polymers: In-Situ SAXS Measurements
,”
Macromolecules
,
43
(
17
), pp.
7212
7221
.
82.
Declet-Perez
,
C.
,
Francis
,
L. F.
, and
Bates
,
F. S.
,
2013
, “
Cavitation in Block Copolymer Modified Epoxy Revealed by In Situ Small-Angle X-Ray Scattering
,”
ACS Macro Lett.
,
2
(
10
), pp.
939
943
.
83.
Wang
,
J.
, and
Mao
,
S. X.
,
2016
, “
Atomistic Perspective on In Situ Nanomechanics
,”
Extreme Mech. Lett.
,
8
, pp.
127
139
.
84.
Sumigawa, T., Shimada, T., Tanaka, S., Unno, H., Ozaki, N., Ashida, S., and Kitamura, T.,
2017
, “
Griffith Criterion for Nanoscale Stress Singularity in Brittle Silicon
,”
ACS Nano
,
11
(6), pp. 6271–6276.
85.
Bufford, D. C., Stauffer, D., Mook, W. M., Syed Asif, S. A., Boyce, B. L., and Hattar, K.,
2016
, “
High Cycle Fatigue in the Transmission Electron Microscope
,”
Nano Lett.
,
16
(
8
), pp.
4946
4953
.
86.
Mayer, C., Li, N., Mara, N., and Chawla, N.,
2015
, “
Micromechanical and In Situ Shear Testing of Al–SiC Nanolaminate Composites in a Transmission Electron Microscope (TEM)
,”
Mater. Sci. Eng.: A
,
621
, pp.
229
235
.
87.
Jaya
,
B. N.
, and
Jayaram
,
V.
,
2016
, “
Fracture Testing at Small-Length Scales: From Plasticity in Si to Brittleness in Pt
,”
JOM
,
68
(
1
), pp.
94
108
.
88.
Sumigawa, T., Shishido, T., Murakami, T., and Kitamura, T.,
2010
, “
Interface Crack Initiation Due to Nano-Scale Stress Concentration
,”
Mater. Sci. Eng.: A
,
527
(
18–19
), pp.
4796
4803
.
89.
Jo, A., Gu, G. H., Moon, H. C., Han, S. H., Oh, S. H., Park, C. G., and Kim, J. K.,
2013
, “
In Situ TEM Observation of Phase Transition of the Nanoscopic Patterns on Baroplastic Block Copolymer Films During Nanoindentation
,”
Nanoscale
,
5
(
10
), pp.
4351
4354
.
90.
Hsiao, M. S., Jiao, Y., Vaia, R. A., and Drummy, L. F.,
2016
, “
Microscopic Characterization of Fracture Mechanisms in Polystyrene Grafted Nanoparticle Assemblies: The Role of Film Thickness and Grafting Density
,”
Microsc. Microanal.
,
22
(
Suppl. S3
), pp.
1856
1857
.
91.
Williams
,
D. B.
, and
Carter
,
C. B.
,
2009
,
Transmission Electron Microscopy a Textbook for Material Science
,
Springer
,
New York
.
92.
Egerton
,
R. F.
,
2013
, “
Control of Radiation Damage in the TEM
,”
Ultramicroscopy
,
127
, pp.
100
108
.
93.
Trent
,
J. S.
,
Scheinbeim
,
J. I.
, and
Couchman
,
P. R.
,
1983
, “
Ruthenium Tetraoxide Staining of Polymers for Electron Microscopy
,”
Macromolecules
,
16
(
4
), pp.
589
598
.
94.
Fox, T. L., Tang, S., Horton, J. M., Holdaway, H. A., Zhao, B., Zhu, L., and Stewart, P. L.,
2015
, “
In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography
,”
Langmuir
,
31
(
31
), pp.
8680
8688
.
95.
Dong, X. H., Ni, B., Huang, M., Hsu, C. H., Chen, Z., Lin, Z., Zhang, W. B., Shi, A. C., and Cheng, S. Z.,
2015
, “
Chain Overcrowding Induced Phase Separation and Hierarchical Structure Formation in Fluorinated Polyhedral Oligomeric Silsesquioxane (FPOSS)-Based Giant Surfactants
,”
Macromolecules
,
48
(
19
), pp.
7172
7179
.
96.
Goode, A. E., Porter, A. E., Kłosowski, M. M., Ryan, M. P., Heutz, S., and McComb, D. W.,
2017
, “
Analytical Transmission Electron Microscopy at Organic Interfaces
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
2
), pp.
55
67
.
97.
Richter, G., Hillerich, K., Gianola, D. S., Monig, R., Kraft, O., and Volkert, C. A.,
2009
, “
Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition
,”
Nano Lett.
,
9
(
8
), pp.
3048
3052
.
98.
Biery
,
N.
,
de Graef
,
M.
, and
Pollock
,
T. M.
,
2003
, “
A Method for Measuring Microstructural-Scale Strains Using a Scanning Electron Microscope: Applications to γ-Titanium Aluminides
,”
Metall. Mater. Trans. A
,
34
(
10
), pp.
2301
2313
.
99.
Sutton, M. A., Li, N., Joy, D. C., Reynolds, A. P., and Li, X.,
2007
, “
Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements—Part I: SEM Imaging at Magnifications From 200 to 10,000
,”
Exp. Mech.
,
47
(
6
), pp.
775
787
.
100.
Sutton, M. A., Li, N., Garcia, D., Cornille, N., Orteu, J. J., McNeill, S. R., Schreier, H. W., Li, X., and Reynolds, A. P.,
2007
, “
Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements—Part II: Experimental Validation for Magnifications From 200 to 10,000
,”
Exp. Mech.
,
47
(
6
), pp.
789
804
.
101.
Clark, B. G., Gianola, D. S., Kraft, O., and Frick, C. P.,
2010
, “
Size Independent Shape Memory Behavior of Nickel–Titanium
,”
Adv. Eng. Mater.
,
12
(
8
), pp.
808
815
.
102.
Orso, S., Wegst, U. G., Eberl, C., and Arzt, E.,
2006
, “
Micrometer-Scale Tensile Testing of Biological Attachment Devices
,”
Adv. Mater.
,
18
(
7
), pp.
874
877
.
103.
Magagnosc, D. J., Ehrbar, R., Kumar, G., He, M. R., Schroers, J., and Gianola, D. S.,
2013
, “
Tunable Tensile Ductility in Metallic Glasses
,”
Sci. Rep.
,
3
, p.
1096
.
104.
Chasiotis
,
I.
, and
Knauss
,
W. G.
,
2002
, “
A New Microtensile Tester for the Study of MEMS Materials With the Aid of Atomic Force Microscopy
,”
Exp. Mech.
,
42
(
1
), pp.
51
57
.
105.
Zhong
,
J.
, and
He
,
D.
,
2015
, “
Combination of Universal Mechanical Testing Machine With Atomic Force Microscope for Materials Research
,”
Sci. Rep.
,
5
, p.
12998
.
106.
Zhong
,
J.
, and
Yan
,
J.
,
2016
, “
Seeing Is Believing: Atomic Force Microscopy Imaging for Nanomaterial Research
,”
RSC Adv.
,
6
(
2
), pp.
1103
1121
.
107.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
, New York.
108.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
109.
Peters
,
W. H.
, and
Ranson
,
W. F.
,
1982
, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
,
21
(
3
), p.
213427
.
110.
Bruck, H. A., McNeill, S. R., Sutton, M. A., and Peters, W. H.,
1989
, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
.
111.
Ganesan, Y., Lu, Y., Peng, C., Lu, H., Ballarini, R., and Lou, J.,
2010
, “
Development and Application of a Novel Microfabricated Device for the In Situ Tensile Testing of 1-D Nanomaterials
,”
J. Microelectromech. Syst.
,
19
(
3
), pp.
675
682
.
112.
Zlotnikov
,
I.
,
Zolotoyabko
,
E.
, and
Fratzl
,
P.
,
2017
, “
Nano-Scale Modulus Mapping of Biological Composite Materials: Theory and Practice
,”
Prog. Mater. Sci.
,
87
, pp.
292
320
.
113.
Terrones, M., Martín, O., González, M., Pozuelo, J., Serrano, B., Cabanelas, J. C., Vega-Díaz, S. M., and Baselga, J.,
2011
, “
Interphases in Graphene Polymer-Based Nanocomposites: Achievements and Challenges
,”
Adv. Mater.
,
23
(
44
), pp.
5302
5310
.
114.
Cao, L., Wang, Y., Dong, P., Vinod, S., Tijerina, J. T., Ajayan, P. M., Xu, Z., and Lou, J.,
2016
, “
Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites
,”
Small
,
12
(
27
), pp.
3723
3731
.
115.
Ciprari
,
D.
,
Jacob
,
K.
, and
Tannenbaum
,
R.
,
2006
, “
Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties
,”
Macromolecules
,
39
(
19
), pp.
6565
6573
.
116.
Syed Asif, S. A., Wahl, K. J., Colton, R. J., and Warren, O. L.,
2001
, “
Quantitative Imaging of Nanoscale Mechanical Properties Using Hybrid Nanoindentation and Force Modulation
,”
J. Appl. Phys.
,
90
(
3
), pp.
1192
1200
.
117.
Cheng, X., Putz, K. W., Wood, C. D., and Brinson, L. C.,
2015
, “
Characterization of Local Elastic Modulus in Confined Polymer Films Via AFM Indentation
,”
Macromol. Rapid Commun.
,
36
(
4
), pp.
391
397
.
118.
Brune, P. F., Blackman, G. S., Diehl, T., Meth, J. S., Brill, D., Tao, Y., and Thornton, J.,
2016
, “
Direct Measurement of Rubber Interphase Stiffness
,”
Macromolecules
,
49
(
13
), pp.
4909
4922
.
119.
Espinosa, H. D., Juster, A. L., Latourte, F. J., Loh, O. Y., Gregoire, D., and Zavattieri, P. D.,
2011
, “
Tablet-Level Origin of Toughening in Abalone Shells and Translation to Synthetic Composite Materials
,”
Nat. Commun.
,
2
, p.
173
.
120.
Vadlamani, V. K., Chalivendra, V. B., Shukla, A., and Yang, S.,
2012
, “
Sensing of Damage in Carbon Nanotubes and Carbon Black-Embedded Epoxy Under Tensile Loading
,”
Polym. Compos.
,
33
(
10
), pp.
1809
1815
.
121.
Erik
,
T. T.
, and
Tsu-Wei
,
C.
,
2008
, “
Real-Time In Situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks
,”
Nanotechnology
,
19
(
21
), p.
215713
.
122.
Thostenson
,
E. T.
, and
Chou
,
T. W.
,
2006
, “
Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing
,”
Adv. Mater.
,
18
(
21
), pp.
2837
2841
.
123.
Liu
,
Z.
,
Zhang
,
J.
, and
Gao
,
B.
,
2009
, “
Raman Spectroscopy of Strained Single-Walled Carbon Nanotubes
,”
Chem. Commun.
, (
45
), pp.
6902
6918
.
124.
Ma, W., Liu, L., Yang, R., Zhang, T., Zhang, Z., Song, L., Ren, Y., Shen, J., Niu, Z., Zhou, W., and Xie, S.,
2009
, “
Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers
,”
Adv. Mater.
,
21
(
5
), pp.
603
608
.
125.
Young, R. J., Gong, L., Kinloch, I. A., Riaz, I., Jalil, R., and Novoselov, K. S.,
2011
, “
Strain Mapping in a Graphene Monolayer Nanocomposite
,”
ACS Nano
,
5
(
4
), pp.
3079
3084
.
126.
Wang, G., Gao, E., Dai, Z., Liu, L., Xu, Z., and Zhang, Z.,
2017
, “
Degradation and Recovery of Graphene/Polymer Interfaces Under Cyclic Mechanical Loading
,”
Compos. Sci. Technol.
,
149
(
Suppl. C
), pp.
220
227
.
127.
Duan, X., Son, H., Gao, B., Zhang, J., Wu, T., Samsonidze, G. G., Dresselhaus, M. S., Liu, Z., and Kong, J.,
2007
, “
Resonant Raman Spectroscopy of Individual Strained Single-Wall Carbon Nanotubes
,”
Nano Lett.
,
7
(
7
), pp.
2116
2121
.
128.
Liu, Y., Hamon, A. L., Haghi-Ashtiani, P., Reiss, T., Fan, B., He, D., and Bai, J.,
2016
, “
Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS
,”
ACS Appl. Mater. Interfaces
,
8
(
49
), pp.
34151
34158
.
129.
Song, L., Wang, Z., Tang, X., Chen, L., Chen, P., Yuan, Q., and Li, L.,
2017
, “
Visualizing the Toughening Mechanism of Nanofiller With 3D X-Ray Nano-CT: Stress-Induced Phase Separation of Silica Nanofiller and Silicone Polymer Double Networks
,”
Macromolecules
,
50
(
18
), pp.
7249
7257
.
130.
Marras, S. I., Tsimpliaraki, A., Zuburtikudis, I., and Panayiotou, C.,
2009
, “
Morphological, Thermal, and Mechanical Characteristics of Polymer/Layered Silicate Nanocomposites: The Role of Filler Modification Level
,”
Polym. Eng. Sci.
,
49
(
6
), pp.
1206
1217
.
131.
Marras
,
S. I.
,
Zuburtikudis
,
I.
, and
Panayiotou
,
C.
,
2010
, “
Solution Casting Versus Melt Compounding: Effect of Fabrication Route on the Structure and Thermal Behavior of Poly(l-Lactic Acid) Clay Nanocomposites
,”
J. Mater. Sci.
,
45
(
23
), pp.
6474
6480
.
132.
Shah
,
R. K.
,
Hunter
,
D. L.
, and
Paul
,
D. R.
,
2005
, “
Nanocomposites From Poly(Ethylene-Co-Methacrylic Acid) Ionomers: Effect of Surfactant Structure on Morphology and Properties
,”
Polymer
,
46
(
8
), pp.
2646
2662
.
133.
Cheng
,
S.-H.
, and
Sun
,
C. T.
,
2014
, “
Size-Dependent Fracture Toughness of Nanoscale Structures: Crack-Tip Stress Approach in Molecular Dynamics
,”
J. Nanomech. Micromech.
,
4
(
4
), p.
A4014001
.
134.
Roy
,
S.
, and
Kumar
,
A.
,
2017
, “
Effect of Particle Size on Mixed-Mode Fracture of Nanographene Reinforced Epoxy and Mode I Delamination of Its Carbon Fiber Composite
,”
Compos. Struct.
,
181
, pp.
1
8
.
135.
Wang
,
X.
,
Jin
,
J.
, and
Song
,
M.
,
2013
, “
An Investigation of the Mechanism of Graphene Toughening Epoxy
,”
Carbon
,
65
, pp.
324
333
.
136.
Khare, R., Mielke, S. L., Paci, J. T., Zhang, S., Ballarini, R., Schatz, G. C., and Belytschko, T.,
2007
, “
Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets
,”
Phys. Rev. B
,
75
(
7
), p.
075412
.
137.
Bernstein
,
N.
, and
Hess
,
D. W.
,
2003
, “
Lattice Trapping Barriers to Brittle Fracture
,”
Phys. Rev. Lett.
,
91
(
2
), p.
025501
.
You do not currently have access to this content.