Fluid added mass, damping, and stiffness are highly relevant parameters to consider when evaluating the dynamic response of a submerged structure in a fluid. The prediction of these parameters for hydraulic turbines has been approached relatively recently. Complex fluid-structure analyses including three-dimensional flow and the need for experiments during operation are the main challenges for the numerical and experimental approaches, respectively. The main objective of this review is to address the impact of different parameters, for example, flow velocity, cavitation, nearby solid structure, and rotational speed on the fluid added mass and damping of Kaplan/Propeller and Francis turbine runners. The fluid added stiffness is also discussed in the last section of the paper. Although studies related to hydraulic turbines are the main objective of this paper, the literature on hydrofoils is also taken into consideration to provide valuable information on topics such as individual runner blades. In this literature survey, the analytical, numerical, and experimental approaches used to determine fluid added parameters are discussed, and the pros and the cons of each method are addressed.

References

1.
Sawin
,
J. L.
,
Seyboth
,
K.
, and
Sverrisson
,
F.
,
2017
, “
Renewables 2017 Global Status Report
,” REN21 Secretariat, Paris, France, Report No.
978-3-9818107-6-9
.http://www.ren21.net/gsr-2017/
2.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand Reinhold Company
,
New York
, pp.
286
424
.
3.
Ohashi
,
H.
,
1994
, “
Case Study of Pump Failure Due to Rotor-Stator Interaction
,”
Int. J. Rotating Mach.
,
1
(
1
), pp.
53
60
.
4.
Coutu
,
A.
,
Roy
,
M. D.
,
Monette
,
C.
, and
Nennemann
,
B.
,
2008
, “
Experience With Rotor-Stator Interactions in High Head Francis Runner
,”
24th IAHR Symposium on Hydraulic Machinery and Systems
, Foz do Iguaçu, Brazil, Oct. 27–31, pp.
1
10
.https://www.scribd.com/document/166119005/2008-Experience-With-Rotor-Stator-Interactions-in-High-Head-Francis-Runner
5.
Frunzǎverde
,
D.
,
Muntean
,
S.
,
Mǎrginean
,
G.
,
Campian
,
V.
,
Marşavina
,
L.
,
Terzi
,
R.
, and
Şerban
,
V.
,
2010
, “
Failure Analysis of a Francis Turbine Runner
,”
25th IAHR Symposium on Hydraulic Machinery and Systems, IOP Publishing
,
Timisoara, Romania
,
Sept. 20–24
, p.
012115
.
6.
Egusquiza
,
E.
,
Valero
,
C.
,
Huang
,
X.
,
Jou
,
E.
,
Guardo
,
A.
, and
Rodriguez
,
C.
,
2012
, “
Failure Investigation of a Large Pump-Turbine Runner
,”
Eng. Fail. Anal.
,
23
, pp.
27
34
.
7.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Michel
,
C. J.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.
8.
Dorji
,
U.
, and
Ghomashchi
,
R.
,
2014
, “
Hydro Turbine Failure Mechanisms: An Overview
,”
Eng. Fail. Anal.
,
44
, pp.
136
147
.
9.
Magnoli
,
M. V.
,
2014
, “
Numerical Simulation of Pressure Oscillations in Large Francis Turbines at Partial and Full Load Operating Conditions and their Effects on the Runner Structural Behaviour and Fatigue Life
,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
10.
Huang
,
X.
,
Chamberland-Lauzon
,
J.
,
Oram
,
C.
,
Klopfer
,
A.
, and
Ruchonnet
,
N.
,
2014
, “
Fatigue Analyses of the Prototype Francis Runners Based on Site Measurements and Simulations
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
,
Montreal, QC, Canada
,
Sept. 22–26
, p.
012014
.
11.
Lyutov
,
A.
,
Kryukov
,
A.
,
Cherny
,
S.
,
Chirkov
,
D.
,
Salienko
,
A.
,
Skorospelov
,
V.
, and
Turuk
,
P.
,
2016
, “
Modelling of a Francis Turbine Runner Fatigue Failure Process Caused by Fluid-Structure Interaction
,”
28th IAHR Symposium on Hydraulic Machinery and Systems
,
Grenoble, France
,
July 4–8
, p.
072012
.
12.
Escudier
,
M.
,
1987
, “
Confined Vortices in Flow Machinery
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
27
52
.
13.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.
14.
Amiri
,
K.
,
Cervantes
,
M. J.
, and
Mulu
,
B.
,
2015
, “
Experimental Investigation of the Hydraulic Loads on the Runner of a Kaplan Turbine Model and the Corresponding Prototype
,”
J. Hydraul. Res.
,
53
(
4
), pp.
452
465
.
15.
Amiri
,
K.
,
Mulu
,
B.
, and
Cervantes
,
M. J.
,
2016
, “
Experimental Investigation of the Interblade Flow in a Kaplan Runner at Several Operating Points Using Laser Doppler Anemometry
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021106
.
16.
Schiller
,
F. C.
,
1971
, “
Wave Forces on a Submerged Horizontal Cylinder
,” M.Sc. thesis, Naval Postgraduate School, Monterey, CA.
17.
Blake
,
W. K.
, and
Maga
,
L. J.
,
1973
, “
Vibratory Dynamics of Flow-Excited Struts in Water
,” Naval Ship Research and Development Center, Washington, DC, Report No. 4087.
18.
Blake
,
W. K.
, and
Maga
,
L. J.
,
1975
, “
On the Flow-Excited Vibrations of Cantilever Struts in Water—I: Flow-Induced Damping and Vibration
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
610
625
.
19.
Blake
,
W. K.
, and
Maga
,
L. J.
,
1975
, “
On the Flow‐Excited Vibrations of Cantilever Struts in Water—II: Surface‐Pressure Fluctuations and Analytical Predictions
,”
J. Acoust. Soc. Am.
,
57
(
6
), pp.
1448
1464
.
20.
Yao
,
Z.
,
Wang
,
F.
,
Dreyer
,
M.
, and
Farhat
,
M.
,
2014
, “
Effect of Trailing Edge Shape on Hydrodynamic Damping for a Hydrofoil
,”
J. Fluids Struct.
,
51
, pp.
189
198
.
21.
Seeley
,
C.
,
Coutu
,
A.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Marmont
,
H.
,
2012
, “
Characterization of Hydrofoil Damping Due to Fluid–Structure Interaction Using Piezocomposite Actuators
,”
Smart Mater. Struct.
,
21
(
3
), p.
035027
.
22.
Coutu
,
A.
,
Seeley
,
C.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Marmont
,
H.
,
2012
, “
Damping Measurements in Flowing Water
,”
26th IAHR Symposium on Hydraulic Machinery and Systems
,
Beijing, China
,
Aug. 19–23
, p.
062060
.
23.
Seeley
,
C.
,
Coutu
,
A.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Marmont
,
H.
,
2013
, “
Determination of Hydrofoil Damping Due to Fluid Structure Interaction Using MFC Actuators
,”
AIAA
Paper No. 2013-1910.
24.
De La Torre
,
O.
,
2013
, “
Influence of Cavitation on the Dynamic Response of Hydrofoils
,”
Ph.D. thesis
, Polytechnic University of Catalonia, Barcelona, Spain.https://upcommons.upc.edu/handle/2117/94901
25.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2013
, “
Experimental Investigation of Added Mass Effects on a Hydrofoil Under Cavitation Conditions
,”
J. Fluids Struct.
,
39
, pp.
173
187
.
26.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2014
, “
Numerical and Experimental Study of a Nearby Solid Boundary and Partial Submergence Effects on Hydrofoil Added Mass
,”
Comput. Fluids
,
91
, pp.
1
9
.
27.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2016
, “
Experimental Mode Shape Determination of a Cantilevered Hydrofoil Under Different Flow Conditions
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
19
), pp.
3408
3419
.
28.
de Souza Braga
,
D.
,
Coelho
,
D. F.
,
Soeiro
,
N. S.
,
de Melo
,
G. D. S. V.
, and
Mesquita
,
A. L. A.
,
2013
, “
Numerical Simulation of Fluid Added Mass Effect on a Kaplan Turbine Runner With Experimental Validation
,”
22nd International Congress of Mechanical Engineering
(
COBEM
), Ribeirão Preto, Brazil, Nov. 3–7, pp.
4331
4339
.https://www.researchgate.net/publication/308063103_Numerical_simulation_of_fluid_added_mass_effect_on_a_kaplan_turbine_runner_with_experimental_validation
29.
Escaler
,
X.
,
Liang
,
Q. W.
,
Valero
,
C.
,
Egusquiza
,
E.
,
Lais
,
S.
,
Sick
,
M.
, and
Weiss
,
T.
,
2008
, “
Experimental Modal Analysis of a Francis Model Runner
,”
24th IAHR Symposium on Hydraulic Machinery and Systems
,
Foz do Iguaçu, Brazil
,
Oct. 27–31
, pp.
1
8
.
30.
Lais
,
S.
,
Liang
,
Q.
,
Henggeler
,
U.
,
Weiss
,
T.
,
Escaler
,
X.
, and
Egusquiza
,
E.
,
2009
, “
Dynamic Analysis of Francis Runners-Experiment and Numerical Simulation
,”
Ijfms
,
2
(
4
), pp.
303
314
.
31.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Liang
,
Q. W.
, and
Avellan
,
F.
,
2006
, “
Experimental Investigation of Added Mass Effects on a Francis Turbine Runner in Still Water
,”
J. Fluids Struct.
,
22
(
5
), pp.
699
712
.
32.
Münch
,
C.
,
Ausoni
,
P.
,
Braun
,
O.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Fluid–Structure Coupling for an Oscillating Hydrofoil
,”
J. Fluids Struct.
,
26
(
6
), pp.
1018
1033
.
33.
Karlsson
,
M.
,
Nilsson
,
H.
, and
Aidanpää
,
J.
,
2009
, “
Numerical Estimation of Torsional Dynamic Coefficients of a Hydraulic Turbine
,”
Int. J. Rotating Mach.
,
2009
, p. 349397.
34.
Soltani Dehkharqani
,
A.
,
Cervantes
,
M. J.
, and
Aidanpää
,
J.
,
2017
, “
Numerical Analysis of Fluid-Added Parameters for the Torsional Vibration of a Kaplan Turbine Model Runner
,”
Adv. Mech. Eng.
,
9
(
10
), pp.
1
10
.
35.
Trivedi
,
C.
, and
Cervantes
,
M. J.
,
2017
, “
Fluid-Structure Interactions in Francis Turbines: A Perspective Review
,”
Renewable Sustainable Energy Rev.
,
68
(
Pt. 1
), pp.
87
101
.
36.
Trivedi
,
C.
,
2017
, “
A Review on Fluid Structure Interaction in Hydraulic Turbines: A Focus on Hydrodynamic Damping
,”
Eng. Fail. Anal.
,
77
, pp.
1
22
.
37.
Jansson
,
I.
,
Åkerstedt
,
H. O.
,
Aidanpää
,
J.
, and
Lundström
,
T. S.
,
2012
, “
The Effect of Inertia and Angular Momentum of a Fluid Annulus on Lateral Transversal Rotor Vibrations
,”
J. Fluids Struct.
,
28
, pp.
328
342
.
38.
Pennacchi
,
P.
,
Borghesani
,
P.
, and
Chatterton
,
S.
,
2015
, “
A Cyclostationary Multi-Domain Analysis of Fluid Instability in Kaplan Turbines
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
375
390
.
39.
Theodorsen
,
T.
,
1935
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
469
.https://ntrs.nasa.gov/search.jsp?R=19930090935
40.
Peters
,
D. A.
,
2008
, “
Two-Dimensional Incompressible Unsteady Airfoil Theory—An Overview
,”
J. Fluids Struct.
,
24
(
3
), pp.
295
312
.
41.
Mao
,
Y.
, and
Young
,
Y. L.
,
2016
, “
Influence of Skew on the Added Mass and Damping Characteristics of Marine Propellers
,”
Ocean Eng.
,
121
, pp.
437
452
.
42.
Keto-Tokoi
,
J. M.
,
Matusiak
,
J. E.
, and
Keskinen
,
E. K.
,
2011
, “
Hydrodynamic Added Mass and Damping of the Kaplan Turbine
,”
ASME
Paper No. IMECE2011-62516.
43.
Puolakka
,
O.
,
Keto-Tokoi
,
J.
, and
Matusiak
,
J.
,
2013
, “
Unsteady Load on an Oscillating Kaplan Turbine Runner
,”
J. Fluids Struct.
,
37
, pp.
22
33
.
44.
Monette
,
C.
,
Nennemann
,
B.
,
Seeley
,
C.
,
Coutu
,
A.
, and
Marmont
,
H.
,
2014
, “
Hydro-Dynamic Damping Theory in Flowing Water
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
, Montreal, QC, Canada, Sept. 22–26, p.
032044
.https://www.researchgate.net/publication/268496450_Hydro-dynamic_damping_theory_in_flowing_water
45.
Vasanthakumar
,
P.
,
2011
, “
Computation of Aerodynamic Damping for Flutter Analysis of a Transonic Fan
,”
ASME
Paper No. GT2011-46597.
46.
Østby
,
P. T.
,
Billdal
,
J. T.
,
Sivertsen
,
K.
,
Haugen
,
B.
, and
Dahlhaug
,
O. G.
,
2016
, “
Dynamic Stresses in High Head Francis Turbines
,”
Int. J. Hydropower Dams
,
23
(
3
), pp.
88
92
.https://www.researchgate.net/publication/303735289_Dynamic_Stresses_In_High_Head_Francis_Turbines
47.
Huang
,
X.
,
Oram
,
C.
, and
Sick
,
M.
,
2014
, “
Static and Dynamic Stress Analyses of the Prototype High Head Francis Runner Based on Site Measurement
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
,
Montreal, QC, Canada
,
Sept. 22–26
, p.
032052
.
48.
Mucchi
,
E.
, and
Dalpiaz
,
G.
,
2015
, “
On the Comparison Between Displacement Modal Testing and Strain Modal Testing
,”
ASME
Paper No. DETC2015-46347.
49.
Valentín
,
D.
,
Presas
,
A.
,
Bossio
,
M.
,
Egusquiza
,
M.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2018
, “
Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges
,”
Sensors
,
18
(
1
), p.
174
.
50.
Pereira
,
F.
,
Farhat
,
M.
, and
Avellan
,
F.
,
1994
, “
Dynamic Calibration of Transient Sensors by Spark Generated Cavity
,”
Bubble Dynamics and Interface Phenomena
,
Birmingham, UK
,
Sept. 6–9
, pp.
227
240
.
51.
Roth
,
S.
,
Calmon
,
M.
,
Farhat
,
M.
,
Münch
,
C.
,
Huebner
,
B.
, and
Avellan
,
F.
,
2009
, “
Hydrodynamic Damping Identification From an Impulse Response of a Vibrating Blade
,”
Third IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Brno, Czech Republic, Oct. 14–16, pp.
253
260
.https://www.researchgate.net/publication/41940274_Hydrodynamic_Damping_Identification_from_an_Impulse_Response_of_a_Vibrating_Blade
52.
Roth
,
S.
,
2012
, “
Fluid-Structure Coupling Effects on the Dynamic Response of Pump-Turbine Guide Vanes
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.https://infoscience.epfl.ch/record/180641?ln=en
53.
Crawley
,
E. F.
, and
De Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
54.
Wilkie
,
W. K.
,
Bryant
,
R. G.
,
High
,
J. W.
,
Fox
,
R. L.
,
Hellbaum
,
R. F.
,
Jalink
,
A.
, Jr
,
Little
,
B. D.
, and
Mirick
,
P. H.
,
2000
, “
Low-Cost Piezocomposite Actuator for Structural Control Applications
,”
Proc. SPIE
,
3991
, pp. 323–334.
55.
Crawley
,
E. F.
, and
De Luis
,
J.
,
1986
, “
Experimental Verification of Distributed Piezoelectric Actuators for Use in Precision Space Structures
,”
AIAA
Paper No. 86-0878.
56.
Botta
,
F.
,
Marx
,
N.
,
Schwingshackl
,
C. W.
,
Cerri
,
G.
, and
Dini
,
D.
,
2013
, “
A Wireless Vibration Control Technique for Gas Turbine Blades Using Piezoelectric Plates and Contactless Energy Transfer
,”
ASME
Paper No. GT2013-95666.
57.
Dimitriadis
,
E. K.
,
Fuller
,
C. R.
, and
Rogers
,
C. A.
,
1991
, “
Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
100
107
.
58.
Gani
,
A.
,
Salami
,
M.
, and
Khan
,
R.
,
2003
, “
Active Vibration Control of a Beam With Piezoelectric Patches: Real-Time Implementation With xPC Target
,”
IEEE Conference on Control Applications
(
CCA
),
Istanbul, Turkey
,
June 23–25
, pp.
538
544
.
59.
Gandhi
,
F.
,
Frecker
,
M.
, and
Nissly
,
A.
,
2008
, “
Design Optimization of a Controllable Camber Rotor Airfoil
,”
AIAA J.
,
46
(
1
), pp.
142
153
.
60.
Presas
,
A.
,
Luo
,
Y.
,
Wang
,
Z.
,
Valentin
,
D.
, and
Egusquiza
,
M.
,
2018
, “
A Review of PZT Patches Applications in Submerged Systems
,”
Sensors (Basel)
,
18
(
7
), p.
2251
.
61.
Jeffers
,
T. R.
,
Kielb
,
J. J.
, and
Abhari
,
R. S.
,
2000
, “
A Novel Technique for the Measurement of Blade Damping Using Piezoelectric Actuators
,”
ASME
Paper No. 2000-GT-0359.
62.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Bossio
,
M.
,
2017
, “
Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches
,”
Sensors
,
17
(
3
), p.
660
.
63.
Zienkiewicz
,
O. C.
, and
Bettess
,
P.
,
1978
, “
Fluid‐Structure Dynamic Interaction and Wave Forces: An Introduction to Numerical Treatment
,”
Int. J. Numer. Methods Eng.
,
13
(
1
), pp.
1
16
.
64.
Geradin
,
M.
, and
Kill
,
N.
,
1984
, “
A New Approach to Finite Element Modelling of Flexible Rotors
,”
Eng. Comput.
,
1
(
1
), pp.
52
64
.
65.
Kumar
,
M. S.
,
2011
, “
Rotor Dynamic Analysis Using ANSYS
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
,
Springer, Dordrecht, The Netherlands
, pp.
153
162
.
66.
Liang
,
Q. W.
,
Rodríguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
Numerical Simulation of Fluid Added Mass Effect on a Francis Turbine Runner
,”
Comput. Fluids
,
36
(
6
), pp.
1106
1118
.
67.
Rodriguez
,
C. G.
,
Flores
,
P.
,
Pierart
,
F. G.
,
Contzen
,
L. R.
, and
Egusquiza
,
E.
,
2012
, “
Capability of Structural–Acoustical FSI Numerical Model to Predict Natural Frequencies of Submerged Structures With Nearby Rigid Surfaces
,”
Comput. Fluids
,
64
, pp.
117
126
.
68.
Zhongyu
,
M.
, and
Zhengwei
,
W.
,
2016
, “
Structural Characteristic in Prototype Runner of Francis Turbine Analysis
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
),
Honolulu, HI
,
Apr. 10–15
, pp.
1
5
.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/242.finalpaper.pdf
69.
Liu
,
X.
,
Zhou
,
L.
,
Escaler
,
X.
,
Wang
,
Z.
,
Luo
,
Y.
, and
De La Torre
,
O.
,
2017
, “
Numerical Simulation of Added Mass Effects on a Hydrofoil in Cavitating Flow Using Acoustic Fluid–Structure Interaction
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041301
.
70.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting
,
Springer-Verlag
,
London
.
71.
Gauthier
,
J. P.
,
Giroux
,
A. M.
,
Etienne
,
S.
, and
Gosselin
,
F. P.
,
2017
, “
A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines
,”
J. Fluids Struct.
,
69
, pp.
341
354
.
72.
Liaghat
,
T.
,
2014
, “
Two-Way Fluid-Structure Coupling in Vibration and Damping Analysis of an Oscillating Hydrofoil
,”
Ph.D. thesis
, Polytechnique Montréal, Montreal, QC, Canada.https://publications.polymtl.ca/1410/1/2014_TaherehLiaghat.pdf
73.
Ward
,
J. C.
,
Harwood
,
C. M.
, and
Young
,
Y. L.
,
2018
, “
Inverse Method for Hydrodynamic Load Reconstruction on a Flexible Surface-Piercing Hydrofoil in Multi-Phase Flow
,”
J. Fluids Struct.
,
77
, pp.
58
79
.
74.
Brennen
,
C. E.
,
1982
, “
A Review of Added Mass and Fluid Inertial Forces
,” Naval Civil Engineering Laboratory, Port Hueneme, CA, Report No.
CR 82.010
.http://resolver.caltech.edu/CaltechAUTHORS:BREncel82
75.
Egusquiza
,
E.
,
Valero
,
C.
,
Presas
,
A.
,
Huang
,
X.
,
Guardo
,
A.
, and
Seidel
,
U.
,
2016
, “
Analysis of the Dynamic Response of Pump-Turbine Impellers: Influence of the Rotor
,”
Mech. Syst. Sig. Process.
,
68
, pp.
330
341
.
76.
Tanaka
,
H.
,
2011
, “
Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-Turbines
,”
Ijfms
,
4
(
2
), pp.
289
306
.
77.
Yadykin
,
Y.
,
Tenetov
,
V.
, and
Levin
,
D.
,
2003
, “
The Added Mass of a Flexible Plate Oscillating in a Fluid
,”
J. Fluids Struct.
,
17
(
1
), pp.
115
123
.
78.
Jeong
,
K.
,
2003
, “
Free Vibration of Two Identical Circular Plates Coupled With Bounded Fluid
,”
J. Sound Vib.
,
260
(
4
), pp.
653
670
.
79.
Young
,
Y. L.
,
Motley
,
M. R.
,
Barber
,
R.
,
Chae
,
E. J.
, and
Garg
,
N.
,
2016
, “
Adaptive Composite Marine Propulsors and Turbines: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060803
.
80.
Bossio
,
M.
,
Valentín
,
D.
,
Presas
,
A.
,
Martin
,
D. R.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Egusquiza
,
M.
,
2017
, “
Numerical Study on the Influence of Acoustic Natural Frequencies on the Dynamic Behaviour of Submerged and Confined Disk-Like Structures
,”
J. Fluids Struct.
,
73
, pp.
53
69
.
81.
Kramer
,
M. R.
,
Liu
,
Z.
, and
Young
,
Y. L.
,
2013
, “
Free Vibration of Cantilevered Composite Plates in Air and in Water
,”
Compos. Struct.
,
95
, pp.
254
263
.
82.
Motley
,
M. R.
,
Kramer
,
M. R.
, and
Young
,
Y. L.
,
2013
, “
Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates
,”
Compos. Struct.
,
96
, pp.
365
375
.
83.
Chae
,
E. J.
,
Akcabay
,
D. T.
,
Lelong
,
A.
,
Astolfi
,
J. A.
, and
Young
,
Y. L.
,
2016
, “
Numerical and Experimental Investigation of Natural Flow-Induced Vibrations of Flexible Hydrofoils
,”
Phys. Fluids
,
28
(
7
), p.
075102
.
84.
Chae
,
E. J.
,
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2017
, “
Influence of Flow-Induced Bend–Twist Coupling on the Natural Vibration Responses of Flexible Hydrofoils
,”
J. Fluids Struct.
,
69
, pp.
323
340
.
85.
Phillips
,
A. W.
,
Cairns
,
R.
,
Davis
,
C.
,
Norman
,
P.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
, and
Young
,
Y.
,
2017
, “
Effect of Material Design Parameters on the Forced Vibration Response of Composite Hydrofoils in Air and in Water
,”
Fifth International Symposium on Marine Propulsors
, Espoo, Finland, June 12–15, pp.
813
822
.https://eprints.utas.edu.au/24729/
86.
Liu
,
D.
,
Liu
,
S.
,
Wu
,
Y.
, and
Liu
,
X.
,
2008
, “
Numerical Simulation of Hydraulic Turbine Based on Fluid-Structure Coupling
,”
Fluid Machinery and Fluid Engineering
,
Springer-Verlag
,
Berlin
, pp.
345
351
.
87.
Benaouicha
,
M.
, and
Astolfi
,
J.
,
2012
, “
Analysis of Added Mass in Cavitating Flow
,”
J. Fluids Struct.
,
31
, pp.
30
48
.
88.
Young
,
Y. L.
,
2007
, “
Time-Dependent Hydroelastic Analysis of Cavitating Propulsors
,”
J. Fluids Struct.
,
23
(
2
), pp.
269
295
.
89.
Young
,
Y. L.
,
2008
, “
Fluid–Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
,
24
(
6
), pp.
799
818
.
90.
Young
,
Y. L.
,
Motley
,
M. R.
, and
Yeung
,
R. W.
,
2010
, “
Three-Dimensional Numerical Modeling of the Transient Fluid-Structural Interaction Response of Tidal Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
1
), p.
011101
.
91.
Young
,
Y. L.
,
Harwood
,
C. M.
,
Montero
,
F. M.
,
Ward
,
J. C.
, and
Ceccio
,
S. L.
,
2017
, “
Ventilation of Lifting Bodies: Review of the Physics and Discussion of Scaling Effects
,”
ASME Appl. Mech. Rev.
,
69
(
1
), p.
010801
.
92.
Amromin
,
E.
, and
Kovinskaya
,
S.
,
2000
, “
Vibration of Cavitating Elastic Wing in a Periodically Perturbed Flow: Excitation of Subharmonics
,”
J. Fluids Struct.
,
14
(
5
), pp.
735
751
.
93.
Ducoin
,
A.
,
Astolfi
,
J. A.
, and
Sigrist
,
J.
,
2012
, “
An Experimental Analysis of Fluid Structure Interaction on a Flexible Hydrofoil in Various Flow Regimes Including Cavitating Flow
,”
Eur. J. Mech. B. Fluids
,
36
, pp.
63
74
.
94.
Naudascher
,
E.
, and
Rockwell
,
D.
,
2012
, “
Flow-Induced Vibrations: An Engineering Guide
,”
Dover Publications
,
Mineola, NY
.
95.
Valentín
,
D.
,
Ramos
,
D.
,
Bossio
,
M.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2016
, “
Influence of the Boundary Conditions on the Natural Frequencies of a Francis Turbine
,”
28th IAHR Symposium on Hydraulic Machinery and Systems
, Grenoble, France, July 4–8, p.
072004
.https://www.researchgate.net/publication/311618745_Influence_of_the_boundary_conditions_on_the_natural_frequencies_of_a_Francis_turbine
96.
Jansson
,
I.
,
2013
, “
Vibrant Bodies of Swirling Flow
,”
Ph.D. thesis
, Luleå University of Technology, Luleå, Sweden.https://www.diva-portal.org/smash/get/diva2:998992/FULLTEXT01.pdf
97.
Askari
,
E.
,
Jeong
,
K.
, and
Amabili
,
M.
,
2013
, “
Hydroelastic Vibration of Circular Plates Immersed in a Liquid-Filled Container With Free Surface
,”
J. Sound Vib.
,
332
(
12
), pp.
3064
3085
.
98.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2014
, “
Experimental Study on the Added Mass and Damping of a Disk Submerged in a Partially Fluid-Filled Tank With Small Radial Confinement
,”
J. Fluids Struct.
,
50
, pp.
1
17
.
99.
Kubota
,
Y.
, and
Suzuki
,
T.
,
1984
, “
Added Mass Effect on Disc Vibrating in Fluid
,”
Trans. Jpn. Soc. Mech. Eng. C.
,
50
(
449
), pp.
243
248
.
100.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Seidel
,
U.
,
2016
, “
Dynamic Response of a Rotating Disk Submerged and Confined: Influence of the Axial Gap
,”
J. Fluids Struct.
,
62
, pp.
332
349
.
101.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Egusquiza
,
M.
,
2017
, “
Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank and Confined With a Nonrigid Cover
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021005
.
102.
Wu
,
Y.
,
Li
,
S.
,
Liu
,
S.
,
Dou
,
H.
, and
Qian
,
Z.
,
2013
,
Vibration of Hydraulic Machinery
,
Springer
,
London
.
103.
Hengstler
,
J. A.
,
2013
, “
Influence of the Fluid-Structure Interaction on the Vibrations of Structures
,”
Ph.D. thesis
, ETH Zurich, Zürich, Switzerland.https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/76519/eth-7837-01.pdf
104.
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Valentin
,
D.
, and
Seidel
,
U.
,
2014
, “
Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk Due to Rotor-Stator Interaction
,”
Sensors
,
14
(
7
), pp.
11919
11942
.
105.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Seidel
,
U.
,
2015
, “
Influence of the Rotation on the Natural Frequencies of a Submerged-Confined Disk in Water
,”
J. Sound Vib.
,
337
, pp.
161
180
.
106.
Mehdigholi
,
H.
,
1991
, “
Forced Vibration of Rotating Discs and Interaction with Non-Rotating Structures
,” Ph.D. thesis, University of London, London.
107.
Kubota
,
Y.
, and
Ohashi
,
H.
,
1991
, “
A Study on the Natural Frequencies of Hydraulic Pumps
,”
First ASME Joint International Conference on Nuclear Engineering
,
Tokyo, Japan
,
Nov. 4–7
, pp.
589
593
.
108.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2016
, “
On the Capability of Structural–Acoustical Fluid–Structure Interaction Simulations to Predict Natural Frequencies of Rotating Disklike Structures Submerged in a Heavy Fluid
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
034502
.
109.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
Krieger Publication Company
,
Malabar, FL
.
110.
Yamamoto
,
T.
,
1983
, “
On the Response of a Coulomb‐Damped Poroelastic Bed to Water Waves
,”
Mar. Georesour. Geotechnol.
,
5
(
2
), pp.
93
130
.
111.
Kareem
,
A.
, and
Gurley
,
K.
,
1996
, “
Damping in Structures: Its Evaluation and Treatment of Uncertainty
,”
J. Wind Eng. Ind. Aerodyn.
,
59
(
2–3
), pp.
131
157
.
112.
Isomura
,
K.
, and
Giles
,
M. B.
,
1998
, “
A Numerical Study of Flutter in a Transonic Fan
,”
ASME J. Turbomach.
,
120
(
3
), pp.
500
507
.
113.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part II: Blade Damping
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022508
.
114.
Grüber
,
B.
, and
Carstens
,
V.
,
2000
, “
The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades—A Numerical Study
,”
ASME J. Turbomach.
,
123
(
2
), pp.
409
417
.
115.
Kaminer
,
A. A.
, and
Kavitskii
,
B. M.
,
1976
, “
Experimental Investigation of Hydrodynamic Damping During Bending Oscillations of Blade Profiles in Water Flow
,”
Strength Mater.
,
8
(
1
), pp.
25
27
.
116.
Liaghat
,
T.
,
Guibault
,
F.
,
Allenbach
,
L.
, and
Nennemann
,
B.
,
2014
, “
Two-Way Fluid-Structure Coupling in Vibration and Damping Analysis of an Oscillating Hydrofoil
,”
ASME
Paper No. IMECE2014-38441.
117.
Kielb
,
J. J.
, and
Abhari
,
R. S.
,
2003
, “
Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
102
112
.
118.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
(
1
), pp.
57
96
.
119.
Zobeiri
,
A.
,
2012
, “
Effect of Hydrofoil Trailing Edge Geometry on the Wake Dynamics
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.https://infoscience.epfl.ch/record/168992/files/EPFL_TH5218.pdf
You do not currently have access to this content.