RESEARCH PAPERS: Offshore Mechanics

Crane Ship Response to Wave Groups

[+] Author and Article Information
T. E. Schellin, T. Jiang

Germanischer Lloyd, Hamburg, Federal Republic of Germany

S. D. Sharma

Institut fur Schiffbau, Hamburg, Federal Republic of Germany

J. Offshore Mech. Arct. Eng 113(3), 211-218 (Aug 01, 1991) (8 pages) doi:10.1115/1.2919922 History: Received June 21, 1990


The motion response of a shear-leg crane ship lifting a heavy load in wave groups was investigated. The 9-DOF dynamic model incorporated hull motions coupled with nonlinear large-angle load swing and elastic stretch of the hoisting rope assembly. Hydrodynamic response forces and wave excitation forces were taken to be frequency dependent, and nonlinear mooring system restoring forces were allowed for. Closed-form linearized results about the system equilibrium state verified our nonlinear simulation algorithm; simulation results in comparison with scale model test measurements, our mathematical model. Wave groups were idealized in two different ways: 1) as continuous wave groups produced by pairs of beating waves of equal amplitude and slightly different periods, and 2) as isolated wave packets generated by superimposing a large number of regular wave components derived from a Gauss-modulated amplitude spectrum. Simulations show that hook load response, strongly coupled with ship motions, was mainly influenced by first-order wave-exciting forces. Low-frequency horizontal ship motions caused by second-order wave (drift) forces did not generally affect hook load response, i.e., first-order and second-order responses were independent.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In