A Numerical Solution for Potential Flows Including the Effects of Vortex Shedding

[+] Author and Article Information
L. H. Wong, S. M. Calisal

University of British Columbia, Mechanical Engineering Department, Vancouver, British Columbia, Canada

J. Offshore Mech. Arct. Eng 115(2), 111-115 (May 01, 1993) (5 pages) doi:10.1115/1.2920099 History: Received March 10, 1992; Revised August 06, 1992; Online June 12, 2008


This paper reports on an attempt to include vortex shedding effects into potential flow calculations using the boundary element method. Significant computational advantages result because of the relatively simple approach to handling separation at the sharp edges while working only with the boundary values. A discrete vortex method was incorporated into a time domain boundary element algorithm for the numerical simulation of oscillating flow past a normal flat plate. Separation from a sharp edge results in the formation of a vortex sheet issuing from the edge. This vortex sheet is modeled by a series of discrete vortices introduced one at a time into the flow field at regular intervals. The motion of each vortex is traced over time using its convection velocity. As long as the Keulegan-Carpenter number is small enough, vortex shedding takes place close to the edge. The discrete vortex method can, in such cases, be looked upon as the inner region solution to the problem of normal oscillating flow past the flat plate. This inner region solution has to be matched with the outer potential flow solution. The combination of boundary element and discrete vortex methods provides this matching and at the same time does not require calculations inside the domain.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In