Low-Temperature Compressive Strength of Glass-Fiber-Reinforced Polymer Composites

[+] Author and Article Information
P. K. Dutta

U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH 03755-1290

J. Offshore Mech. Arct. Eng 116(3), 167-172 (Aug 01, 1994) (6 pages) doi:10.1115/1.2920146 History: Received January 01, 1991; Online June 12, 2008


Polymeric composites are relatively inexpensive materials of high strength, in which deformation of the matrix is used to transfer stress by means of shear traction at the fiber-matrix interface to the embedded high-strength fibers. At low temperatures, complex stresses are set up within the microstructure of the material as a result of matrix stiffening and mismatch of thermal expansion coefficients of the constituents of the composites. These stresses in turn affect the strength and deformation characteristics of the composites. This is demonstrated by compression testing of an unidirectional glass-fiber-reinforced polymer composite at room and low temperatures. The increase of compressive strength matched the analytical prediction of strength increase modeled from the consideration of increase in matrix stiffness and thermal residual stresses at low temperatures. Additional compression tests performed on a batch of low-temperature thermally cycled specimens confirmed the predictable reduction of brittleness due to suspected increase of microcrack density. The mode of failure characterized by definite pre-fracture yielding conforms more to Budiansky’s plastic microbuckling theory than to Rosen’s theory of elastic shear or extensional buckling.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In