Abstract

Vehicle velocity forecasting plays a critical role in operation scheduling of varying systems and devices for a passenger vehicle. The forecasted information serves as an indispensable prerequisite for vehicle energy management via predictive control algorithms or vehicle ecosystem control Co-design. This paper first generates a repeated urban driving cycle dataset at a fixed route in the Dallas area, aiming to simulate a daily commuting route and serves as a base for further energy management study. To explore the dynamic properties, these driving cycles are piecewise divided into cycle segments via intersection/stop identification. A vehicle velocity forecasting model pool is then developed for each segment, including the hidden Markov chain model, long short-term memory network, artificial neural network, support vector regression, and similarity methods. To further improve the forecasting performance, higher-level algorithms like localized model selection, ensemble approaches, and a combination of them are investigated and compared. Results show that (i) the segment-based forecast improves the forecasting accuracy by up to 20.1%, compared to the whole cycle-based forecast, and (ii) the hybrid localized model framework that combines dynamic model selection and an ensemble approach could further improve the accuracy by 9.7%. Moreover, the potential of leveraging the stopping location at an intersection to estimate the waiting time is also evaluated in this study.

References

1.
Torre-Bastida
,
A. I.
,
Del Ser
,
J.
,
Laña
,
I.
,
Ilardia
,
M.
,
Bilbao
,
M. N.
, and
Campos-Cordobés
,
S.
,
2018
, “
Big Data for Transportation and Mobility: Recent Advances, Trends and Challenges
,”
IET Intell. Transp. Syst.
,
12
(
8
), pp.
742
755
.
2.
Vlahogianni
,
E. I.
,
Karlaftis
,
M. G.
, and
Golias
,
J. C.
,
2014
, “
Short-Term Traffic Forecasting: Where We are and Where We’re Going
,”
Transp. Res. Part C: Emerg. Technol.
,
43
(
2014
), pp.
3
19
.
3.
Lana
,
I.
,
Del Ser
,
J.
,
Velez
,
M.
, and
Vlahogianni
,
E. I.
,
2018
, “
Road Traffic Forecasting: Recent Advances and New Challenges
,”
IEEE Intell. Transp. Syst. Mag.
,
10
(
2
), pp.
93
109
.
4.
Guo
,
J.
, and
Williams
,
B. M.
,
2010
, “
Real-Time Short-Term Traffic Speed Level Forecasting and Uncertainty Quantification Using Layered Kalman Filters
,”
Transp. Res. Rec.
,
2175
(
1
), pp.
28
37
.
5.
Wang
,
J.
, and
Shi
,
Q.
,
2013
, “
Short-Term Traffic Speed Forecasting Hybrid Model Based on Chaos–Wavelet Analysis-Support Vector Machine Theory
,”
Transp. Res. Part C: Emerg. Technol.
,
27
, pp.
219
232
.
6.
Ye
,
Q.
,
Szeto
,
W. Y.
, and
Wong
,
S. C.
,
2012
, “
Short-Term Traffic Speed Forecasting Based on Data Recorded At Irregular Intervals
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
4
), pp.
1727
1737
.
7.
Jiang
,
B.
, and
Fei
,
Y.
,
2015
, “
Traffic and Vehicle Speed Prediction With Neural Network and Hidden Markov Model in Vehicular Networks
,”
2015 IEEE Intelligent Vehicles Symposium (IV)
,
Seoul, South Korea
, IEEE, pp.
1082
1087
.
8.
Zhao
,
Z.
,
Chen
,
W.
,
Wu
,
X.
,
Chen
,
P. C.
, and
Liu
,
J.
,
2017
, “
LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast
,”
IET Intell. Transp. Syst.
,
11
(
2
), pp.
68
75
.
9.
Lee
,
K.
,
Eo
,
M.
,
Jung
,
E.
,
Yoon
,
Y.
, and
Rhee
,
W.
,
2021
, “
Short-Term Traffic Prediction With Deep Neural Networks: A Survey
,”
IEEE Access
,
9
, pp.
54739
54756
.
10.
Ma
,
X.
,
Dai
,
Z.
,
He
,
Z.
,
Ma
,
J.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2017
, “
Learning Traffic As Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
,”
Sensors
,
17
(
4
), p.
818
.
11.
Wu
,
Y.
, and
Tan
,
H.
,
2016
, “
Short-Term Traffic Flow Forecasting With Spatial-Temporal Correlation in a Hybrid Deep Learning Framework
.” arXiv preprint arXiv:1612.01022.
12.
Yu
,
H.
,
Wu
,
Z.
,
Wang
,
S.
,
Wang
,
Y.
, and
Ma
,
X.
,
2017
, “
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
,”
Sensors
,
17
(
7
), p.
1501
.
13.
Zhao
,
L.
,
Song
,
Y.
,
Zhang
,
C.
,
Liu
,
Y.
,
Wang
,
P.
,
Lin
,
T.
,
Deng
,
M.
, and
Li
,
H.
,
2019
, “
T-gcn: A Temporal Graph Convolutional Network for Traffic Prediction
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
9
), pp.
3848
3858
.
14.
Lv
,
M.
,
Hong
,
Z.
,
Chen
,
L.
,
Chen
,
T.
,
Zhu
,
T.
, and
Ji
,
S.
,
2020
, “
Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
,”
IEEE Trans. Intell. Transp. Syst.
,
22
, pp.
1
12
.
15.
Mengzhang
,
L.
, and
Zhanxing
,
Z.
,
2020
, “
Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
.” arXiv preprint arXiv:2012.09641.
16.
Fan
,
X.
,
Xiang
,
C.
,
Gong
,
L.
,
He
,
X.
,
Qu
,
Y.
,
Amirgholipour
,
S.
,
Xi
,
Y.
,
Nanda
,
P.
, and
He
,
X.
,
2020
, “
Deep Learning for Intelligent Traffic Sensing and Prediction: Recent Advances and Future Challenges
,”
CCF Trans. Pervasive Comput. Interact.
,
2
, pp.
240
260
.
17.
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
Electric Vehicle Battery Thermal and Cabin Climate Management Based on Model Predictive Control
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031705
.
18.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-McPherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Cabin and Battery Thermal Management of Connected and Automated Hevs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1711
1726
.
19.
Amini
,
M. R.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2021
, “
Hierarchical MPC for Robust Eco-Cooling of Connected and Automated Vehicles and Its Application to Electric Vehicle Battery Thermal Management
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
316
328
.
20.
Zhou
,
Y.
,
Ravey
,
A.
, and
Péra
,
M.-C.
,
2019
, “
A Survey on Driving Prediction Techniques for Predictive Energy Management of Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
,
412
, pp.
480
495
.
21.
Wang
,
X.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2018
, “
Multidisciplinary and Multifidelity Design Optimization of Electric Vehicle Battery Thermal Management System
,”
ASME J. Mech. Des.
,
140
(
9
), p.
094501
.
22.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Self-Adapting J-Type Air-Based Battery Thermal Management System Via Model Predictive Control
,”
Appl. Energy.
,
263
, p.
114640
.
23.
Oncken
,
J.
, and
Chen
,
B.
,
2020
, “
Real-Time Model Predictive Powertrain Control for a Connected Plug-in Hybrid Electric Vehicle
,”
IEEE Trans. Vehicular Technol.
,
69
(
8
), pp.
8420
8432
.
24.
Jing
,
J.
,
Filev
,
D.
,
Kurt
,
A.
,
Özatay
,
E.
,
Michelini
,
J.
, and
Özgüner
,
Ü.
,
2017
, “
Vehicle Speed Prediction Using a Cooperative Method of Fuzzy Markov Model and Auto-Regressive Model
,”
2017 IEEE Intelligent Vehicles Symposium (IV)
,
Redondo Beach, CA
, IEEE, pp.
881
886
.
25.
Zhou
,
Y.
,
Ravey
,
A.
, and
Pera
,
M.-C.
,
2019
, “
A Velocity Prediction Method Based on Self-Learning Multi-Step Markov Chain
,”
IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society
,
Lisbon, Portugal
, Vol. 1, IEEE, pp.
2598
2603
.
26.
Sun
,
C.
,
Hu
,
X.
,
Moura
,
S. J.
, and
Sun
,
F.
,
2014
, “
Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
1197
1204
.
27.
Liu
,
K.
,
Asher
,
Z.
,
Gong
,
X.
,
Huang
,
M.
, and
Kolmanovsky
,
I.
,
2019
,
Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction using Machine Learning
. Technical Report, SAE Technical Paper.
28.
Rabinowitz
,
A.
,
Araghi
,
F. M.
,
Gaikwad
,
T.
,
Asher
,
Z. D.
, and
Bradley
,
T. H.
,
2021
, “
Development and Evaluation of Velocity Predictive Optimal Energy Management Strategies in Intelligent and Connected Hybrid Electric Vehicles
,”
Energies
,
14
(
18
), p.
5713
.
29.
Gaikwad
,
T.
,
Rabinowitz
,
A.
,
Motallebiaraghi
,
F.
,
Bradley
,
T.
,
Asher
,
Z.
,
Fong
,
A.
, and
Meyer
,
R.
,
2020
,
Vehicle Velocity Prediction using Artificial Neural Network and Effect of Real World Signals on Prediction Window
. Technical Report, SAE Technical Paper.
30.
Lemieux
,
J.
, and
Ma
,
Y.
,
2015
, “
Vehicle Speed Prediction Using Deep Learning
,”
2015 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Montréal, Canada
, pp.
1
5
.
31.
Moser
,
D.
,
Waschl
,
H.
,
Schmied
,
R.
, and
Efendic
,
H.
,
2015
, “
Short Term Prediction of a Vehicle’s Velocity Trajectory Using Its
,”
SAE Int. J. Passenger Cars-Electronic and Electr. Syst.
,
8
(
2015-01-0295
), pp.
364
370
.
32.
Zhang
,
F.
,
Xi
,
J.
, and
Langari
,
R.
,
2016
, “
Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
2
), pp.
416
430
.
33.
Rama
,
N.
,
Wang
,
H.
,
Orlando
,
J.
,
Robinette
,
D.
, and
Chen
,
B.
,
2019
, “
Route-Optimized Energy Management of Connected and Automated Multi-Mode Plug-in Hybrid Electric Vehicle Using Dynamic Programming
,”
Society of Automotive Engineers Technical Paper Series
,
1
, p.
15
.
34.
Chen
,
B.
,
Robinette
,
D.
,
Shahbakhti
,
M.
,
Zhang
,
K.
,
Naber
,
J.
,
Worm
,
J.
,
Pinnow
,
C.
, and
Morgan
,
C.
,
2017
, “
Connected Vehicles and Powertrain Optimization
,”
Mech. Eng.
,
139
(
09
), pp.
S12
S18
.
35.
Johannesson
,
L.
,
Asbogard
,
M.
, and
Egardt
,
B.
,
2007
, “
Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming
,”
IEEE Trans. Intell. Transp. Syst.
,
8
(
1
), pp.
71
83
.
36.
Barik
,
B.
,
Bhat
,
P. K.
,
Oncken
,
J.
,
Chen
,
B.
,
Orlando
,
J.
, and
Robinette
,
D.
,
2018
, “
Optimal Velocity Prediction for Fuel Economy Improvement of Connected Vehicles
,”
IET Intell. Transp. Syst.
,
12
(
10
), pp.
1329
1335
.
37.
Oh
,
G.
,
Leblanc
,
D. J.
, and
Peng
,
H.
,
2019
, “
Vehicle Energy Dataset (ved), a Large-Scale Dataset for Vehicle Energy Consumption Research
.” arXiv preprint arXiv:1905.02081.
38.
Bagloee
,
S. A.
,
Tavana
,
M.
,
Asadi
,
M.
, and
Oliver
,
T.
,
2016
, “
Autonomous Vehicles: Challenges, Opportunities, and Future Implications for Transportation Policies
,”
J. Modern Transp.
,
24
(
4
), pp.
284
303
.
39.
NCTCG
.
Government Report Transportation System Management
, https://www.nctcog.org/trans/manage/its/transportation-systems-management.
40.
Cheng
,
S.
,
Lu
,
F.
, and
Peng
,
P.
,
2020
, “
Short-Term Traffic Forecasting by Mining the Non-Stationarity of Spatiotemporal Patterns
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
10
), pp.
6365
6383
.
41.
Le Rhun
,
A.
,
Bonnans
,
F.
,
De Nunzio
,
G.
,
Leroy
,
T.
, and
Martinon
,
P.
,
2019
, “
A Bi-Level Energy Management Strategy for HEVs under Probabilistic Traffic Conditions
.”
42.
Nair
,
D. J.
,
Gilles
,
F.
,
Chand
,
S.
,
Saxena
,
N.
, and
Dixit
,
V.
,
2019
, “
Characterizing Multicity Urban Traffic Conditions Using Crowdsourced Data
,”
PLoS. One.
,
14
(
3
), p.
e0212845
.
43.
Amini
,
M. R.
,
Sun
,
J.
, and
Kolmanovsky
,
I.
,
2018
, “
Two-Layer Model Predictive Battery Thermal and Energy Management Optimization for Connected and Automated Electric Vehicles
,”
2018 IEEE Conference on Decision and Control (CDC)
,
Miami Beach, FL
, IEEE, pp.
6976
6981
.
44.
Rakthanmanon
,
T.
,
Campana
,
B.
,
Mueen
,
A.
,
Batista
,
G.
,
Westover
,
B.
,
Zhu
,
Q.
,
Zakaria
,
J.
, and
Keogh
,
E.
,
2012
, “
Searching and Mining Trillions of Time Series Subsequences Under Dynamic Time Warping
,”
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Beijing, China
, pp.
262
270
.
45.
Blunsom
,
P.
,
2004
, “
Hidden Markov Models
.”
Lecture Notes, August
,
15
(
18–19
), p.
48
.
46.
Bandara
,
K.
,
Hewamalage
,
H.
,
Liu
,
Y.-H.
,
Kang
,
Y.
, and
Bergmeir
,
C.
,
2020
, “
Improving the Accuracy of Global Forecasting Models using Time Series Data Augmentation
.” arXiv preprint arXiv:2008.02663.
47.
Mark
,
C.
,
Metzner
,
C.
,
Lautscham
,
L.
,
Strissel
,
P. L.
,
Strick
,
R.
, and
Fabry
,
B.
,
2018
, “
Bayesian Model Selection for Complex Dynamic Systems
,”
Nat. Commun.
,
9
(
1
), pp.
1
12
.
48.
Feng
,
C.
,
Sun
,
M.
, and
Zhang
,
J.
,
2020
, “
Reinforced Deterministic and Probabilistic Load Forecasting Via q -Learning Dynamic Model Selection
,”
IEEE Trans. Smart Grid
,
11
(
2
), pp.
1377
1386
.
49.
Sato
,
M.-A.
,
2001
, “
Online Model Selection Based on the Variational Bayes
,”
Neural comput.
,
13
(
7
), pp.
1649
1681
.
50.
Yoneda
,
K.
,
Kuramoto
,
A.
,
Suganuma
,
N.
,
Asaka
,
T.
,
Aldibaja
,
M.
, and
Yanase
,
R.
,
2020
, “
Robust Traffic Light and Arrow Detection Using Digital Map with Spatial Prior Information for Automated Driving
,”
Sensors
,
20
(
4
), p.
1181
.
You do not currently have access to this content.