Cyclic loading of bone during daily activities can lead to fatigue degradation and increased risk of fracture in both the young and elderly population. Damage processes under cyclic loading in trabecular bone result in the reduction of the elastic modulus and accumulation of residual strain. These effects increase with increasing stress levels, leading to a progressive reduction in fatigue life. The present work analyzes the effect of stress and strain variation on the above damage processes in bovine trabecular bone, and develops a phenomenological model relating fatigue life to the imposed stress level. The elastic modulus reduction of the bone specimens was observed to depend on the maximum compressive strain, while the rate of residual strain accumulation was a function of the stress level. A model was developed for the upper and lower bounds of bone elastic modulus reduction with increasing number of cycles, at each stress range. The experimental observations were described well by the model. The model predicted the bounds of the fatigue life with change in fatigue stress. The decrease in the fatigue life with increasing stress was related to corresponding increases in the residual strain accumulation rates at the elevated stress levels. The model shows the validity of fatigue predictions from relatively few cyclic experiments, by combining trends observed in the monotonic and the cyclic tests. The model also presents a relatively simple procedure for predicting the endurance limit for bovine trabecular bone specimens.

1.
Freeman
,
M. A. R.
,
Todd
,
R. C.
, and
Pirie
,
C. J.
,
1974
, “
Role of Fatigue in Pathogenesis of Senile Femoral Neck Fractures
,”
J. Bone Jt. Surg.
,
56B
, pp.
698
702
.
2.
Riggs
,
B. L.
, and
Melton
,
L. J.
,
1995
, “
The Worldwide Problem of Osteoporosis: Insights Offered by Epidemiology
,”
Bone (N.Y.)
,
17
, pp.
S505–S511
S505–S511
.
3.
Daffner
,
R. H.
, and
Pavlov
,
H.
,
1992
, “
Stress Fractures: Current Concepts
,”
Am. J. Roentgenol.
,
159
, pp.
245
252
.
4.
Burr
,
D. B.
,
Forwood
,
M. R.
,
Fyhrie
,
D. P.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Turner
,
C. H.
,
1997
, “
Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures
,”
J. Bone Miner. Res.
,
12
, pp.
6
15
.
5.
Giladi
,
M.
,
Milgrom
,
C.
,
Kashtan
,
H.
,
Stein
,
M.
,
Chisin
,
R.
, and
Dizian
,
R.
,
1986
, “
Recurrent Stress Fractures in Military Recruits. One Year Follow-up of 66 Recruits
,”
J. Bone Jt. Surg.
,
68B
, pp.
439
441
.
6.
Matheson
,
G. O.
,
Clement
,
D. B.
,
McKenzie
,
D. C.
,
Taunton
,
J. E.
,
Llyod-Smith
,
D. R.
, and
MacIntyre
,
J. G.
,
1987
, “
Stress Fractures in Athletes: A Study of 320 Cases
,”
Am. J. Sports Med.
,
15
, pp.
46
58
.
7.
Lane
,
J. M.
,
Russell
,
L.
, and
Khan
,
S. N.
,
2000
, “
Osteoporosis
,”
Clin. Orthop.
,
372
, pp.
139
150
.
8.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1997
, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
,
22
, pp.
140
150
.
9.
Michel
,
M. C.
,
Guo
,
X.-D. E.
,
Gibson
,
L. J.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1993
, “
Compressive Fatigue Behavior of Bovine Trabecular Bone
,”
J. Biomech.
,
26
, pp.
453
463
.
10.
Bowman
,
S. M.
,
Guo
,
X. E.
,
Cheng
,
D. W.
,
Keaveny
,
T. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1998
, “
Creep Contributes to the Fatigue Behavior of Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
120
, pp.
647
654
.
11.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2003
, “
Fatigue of Bovine Trabecular Bone
,”
J. Biomech. Eng.
125
, pp.
761
768
.
12.
Haddock, S. M., Yeh, O. C., Mummaneni, P. V., Rosenberg, W. S., and Keaveny, T. M., 2000, “Fatigue Behavior of Human Vertebral Trabecular Bone,” 46th Annual Meeting, Orthopaedic Research Society, pg. 733.
13.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2003
, “
Fatigue Microdamage in Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
125
, pp.
769
776
.
14.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2002
, “
Microdamage Accumulation in Bovine Trabecular Bone in Uniaxial Compression
,”
ASME J. Biomech. Eng.
,
124
, pp.
63
71
.
15.
Schaffler
,
M. B.
,
Radin
,
E. L.
, and
Burr
,
D. B.
,
1989
, “
Mechanical and Morphological Effects of Strain Rate on Fatigue of Compact Bone
,”
Bone (N.Y.)
,
10
,
207
214
.
16.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Hasan
,
M. S.
, and
Pidaprati
,
R.
,
1998
, “
Does Microdamage Accumulation Affect the Mechanical Properties of Bone?
,”
J. Biomech.
,
31
, pp.
337
345
.
17.
Taylor
,
D.
,
O’Brien
,
F.
, and
Lee
,
T. C.
,
2002
, “
A Theoretical Model for the Simulation of Microdamage Accumulation and Repair in Compact Bone
,”
Meccanica
,
37
, pp.
397
406
.
18.
Moore
,
T. L. A.
,
O’Brien
,
F. J.
, and
Gibson
,
L. J.
,
2004
, “
Creep Does Not Contribute to Fatigue in Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
126
, pp.
321
329
.
19.
Guo
,
X.-D. E.
,
McMahon
,
T. A.
,
Keaveny
,
T. M.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1994
, “
Finite Element Modeling of Damage Accumulation in Trabecular Bone under Cyclic Loading
,”
J. Biomech.
,
27
, pp.
145
155
.
20.
Schaffner
,
G.
,
Guo
,
X. E.
,
Silva
,
M. J.
, and
Gibson
,
L. J.
,
2000
, “
Modelling Fatigue Damage Accumulation in Two-dimensional Voronoi Honeycombs
,”
Int. J. Mech. Sci.
,
42
, pp.
645
656
.
21.
Makiyama
,
A. M.
,
Vajjhala
,
S.
, and
Gibson
,
L. J.
,
2002
, “
Analysis of Crack Growth in a 3D Voronoi Structure: A Model for Fatigue in Low Density Trabecular Bone
,”
J. Biomech. Eng.
,
124
, pp.
512
520
.
22.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
, pp.
528
534
.
23.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1983
, “
Cycle-dependent and Time-dependent Bone Fracture With Repeated Loading
,”
J. Biomech. Eng.
,
105
, pp.
166
170
.
24.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1985
, “
A Cumulative Damage Model for Bone Fracture
,”
J. Orthop. Res.
,
3
, pp.
84
90
.
25.
Taylor
,
D.
,
2002
, “
Modelling of Fatigue Crack Growth at the Microstructural Level
,”
Comput. Mater. Sci.
,
25
, pp.
228
236
.
26.
Keaveny
,
T. M.
,
Guo
,
X.-D. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1994
, “
Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains
,”
J. Biomech.
,
27
, pp.
1127
1136
.
27.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Guo
,
X.-D. E.
, and
Hayes
,
W. C.
,
1994
, “
Mechanical Behavior of Damaged Trabecular Bone
,”
J. Biomech.
,
27
, pp.
1309
1318
.
28.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
,
1997
, “
Systematic and Random Errors in Compression Testing of Trabecular Bone
,”
J. Orthop. Res.
,
15
, pp.
101
110
.
29.
Gibson
,
L. J.
,
1985
, “
The Mechanical Behavior of Cancellous Bone
,”
J. Biomech.
,
18
, pp.
317
328
.
30.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
, pp.
307
333
.
31.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
, pp.
897
904
.
32.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
, and
Kopperdahl
,
D. L.
,
1999
, “
Mechanical Behavior of Human Trabecular Bone after Overloading
,”
J. Orthop. Res.
,
17
, pp.
346
353
.
33.
Suresh, S., 1991, Fatigue of materials, Cambridge University Press, Cambridge, U.K., p. 127.
34.
Lemaitre, J., 1992, A Course on Damage Mechanics, Springer-Verlag, p. 110.
You do not currently have access to this content.