Recent results demonstrate the exquisite sensitivity of cell orientation responses to the pattern of imposed deformation. Cells undergoing pure in-plane uniaxial stretching orient differently than cells that are simply elongated—likely because the latter stimulus produces simultaneous compression in the unstretched direction. It is not known, however, if cells respond differently to pure stretching than to pure compression. This study was performed to address this issue. Human aortic endothelial cells were seeded on deformable silicone membranes and subjected to various magnitudes and rates of pure stretching or compression. The cell orientation and cytoskeletal stress fiber organization responses were examined. Both stretching and compression resulted in magnitude-dependent but not rate-dependent orientation responses away from the deforming direction. Compression produced a slower temporal response than stretching. However, stress fiber reorganization responses–early disruption followed by reassembly into parallel arrays along the cells’ long axes were similar between the two stimuli. Moreover, the cell orientation and stress fiber responses appeared to be uncoupled since disruption of stress fibers was not required for the cell orientation. Moreover, parallel actin stress fibers were observed at oblique angles to the deforming direction indicating that stress fibers can reassemble when undergoing deformation.

1.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Moldovan
,
N. I.
, and
Yin
,
F. C. P.
,
2000
, “
Leukotrienes and Tyrosine Phosphorylation Mediate Stretching-Induced Actin Cytoskeletal Remodeling in Endothelial Cells
,”
Cell Motil. Cytoskeleton
,
46
, pp.
137
145
.
2.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C. P.
,
2001
, “
Specificity of Endothlial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
,
34
, pp.
1563
1572
.
3.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
,
Burki
,
E.
,
Meister
,
J. J.
, and
Brunner
,
H. R.
,
1995
, “
Synergistic Effects of Fluid Sheer Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler., Thromb., Vasc. Biol.
,
15
, pp.
1781
1786
.
4.
Ives
,
C. L.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
1986
, “
Mechanical Effects on Endothelial Cell Morphology: In Vitro Assessment
,”
In Vitro Cell Dev. Biol.
,
22
, pp.
500
507
.
5.
Dartsch
,
P. C.
, and
Betz
,
E.
,
1989
, “
Response of Cultured Endothelial Cells to Mechanical Stimulation
,”
Basic Res. Cardiol.
,
84
, pp.
268
281
.
6.
Iba
,
T.
, and
Sumpio
,
B. E.
,
1991
, “
Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain In Vitro
,”
Microvasc. Res.
,
42
, pp.
245
254
.
7.
Takemasa
,
T.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
,
1997
, “
Amplitude-Dependent Stress Fiber Reorientation in Early Response to Cyclic Strain
,”
Exp. Cell Res.
,
230
, pp.
407
410
.
8.
Takemasa
,
T.
,
Yamaguchi
,
T.
,
Yamamoto
,
Y.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
,
1998
, “
Oblique Alignment of Stress Fibers in Cells Reduces the Mechanical Stress in Cyclically Deforming Fields
,”
Eur. J. Cell Biol.
,
77
(
2
), pp.
91
99
.
9.
Wang
,
J. H.-C.
, and
Grood
,
E. S.
,
2000
, “
The Strain Magnitude and Contact Guidance Determine Orientation Response of Fibroblasts to Cyclic Substrate Strains
,”
Connect. Tissue Res.
,
41
, pp.
29
36
.
10.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C. P.
,
2000
, “
Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching
,”
Ann. Biomed. Eng.
,
28
, pp.
1165
1171
.
11.
Wang
,
H. C.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
,
1995
, “
Cell Orientation Response to Cyclically Deformed Stustrates: Experimental Validation of a Cell Model
,”
J. Biomech.
,
7
, pp.
130
138
.
12.
Wang
,
J. H.-C.
,
2000
, “
Substrate Deformation Determines Actin Cytoskeleton Reorganization: A Mathematical Modeling and Experimental Study
,”
J. Theor. Biol.
,
202
, pp.
33
41
.
13.
Yamada
,
H.
,
Takemasa
,
T.
, and
Yamaguchi
,
T.
,
2000
, “
Theoretical Study of Intracellular Stress Fiber Orientation under Cyclic Deformation
,”
J. Biomech.
,
33
, pp.
1501
1505
.
14.
Dobrin
,
P. B.
,
1978
, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
,
58
, pp.
397
460
.
15.
Wedding
,
K. L.
,
Draney
,
M. T.
,
Herfkens
,
R. J.
,
Zarins
,
C. K.
,
Taylor
,
C. A.
, and
Pele
,
N. J.
,
2002
, “
Measurement of Vessel Wall Strain Using Cine Phase Contrast MRI
,”
J. Magn. Reson Imaging
,
15
, pp.
418
428
.
16.
Naruse
,
K.
,
Yamada
,
T.
, and
Sokabe
,
M.
,
1998
, “
Involvement of SA Channels in Orienting Response of Cultured Endothelial Cells to Cyclic Stretch
,”
Am. J. Physiol.
,
274
, pp.
H1532–H1538
H1532–H1538
.
17.
Glantz, S. A., 1987, “Primer of Biostatistics,” Vol. 2, McGraw-Hill, New York, pp. 320–333.
18.
Gudi
,
S. R. P.
,
Lee
,
A. A.
,
Clark
,
C. B.
, and
Frangos
,
J. A.
,
1998
, “
Equibiaxial Strain and Strain Rate Stimulate Early Activation of G Proteins in Cardiac Fibroblasts
,”
Am. J. Physiol.
,
274
, pp.
C1424–C1428
C1424–C1428
.
19.
Bershadsky
,
A. D.
,
Balaban
,
N. Q.
, and
Geiger
,
B.
,
2003
, “
Adhesion-Dependent Cell Mechanosensitivity
,”
Annu. Rev. Cell Dev. Biol.
,
19
, pp.
677
695
.
20.
Costa
,
K.
,
Hucker
,
W. J.
, and
Yin
,
F.
,
2002
, “
Buckling of Actin Stress Fibers: A New Wrinkle in the Cytoskeletal Tapestry
,”
Cell Motil. Cytoskeleton
,
52
, pp.
266
274
.
21.
Sadoshima
,
J. I.
,
Takahashi
,
T.
,
Jahn
,
L.
, and
Izumo
,
S.
,
1992
, “
Roles of Mechano-Sensitive Ion Channels, Cytoskeleton, and Contractile Activity in Stretch-Induced Immediate-Early Gene Expression and Hypertrophy of Cardiac Myocytes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
89
, pp.
9905
9909
.
22.
Naruse
,
K.
,
Sai
,
X.
,
Yokoyama
,
N.
, and
Sokabe
,
M.
,
1998
, “
Uni-Axial Cyclic Stretch Induces c-src Activation and Translocation in Human Endothial Cells via Channel Activation
,”
FEBS Lett.
,
441
, pp.
111
115
.
You do not currently have access to this content.