An abdominal aortic aneurysm (AAA) is a permanent localized expansion of the abdominal aorta with mortality rate of up to 90% after rupture. AAA growth is a process of vascular degeneration accompanied by a reduction in wall strength and an increase in inflammatory activity. It is unclear whether this process can be intervened to attenuate AAA growth, and hence, it is of great clinical interest to develop a technique that can stabilize the AAA. The objective of this work is to develop a protocol for future studies to evaluate the effects of drug-based therapies on the mechanics and inflammation in rodent models of AAA. The scope of the study is limited to the use of pentagalloyl glucose (PGG) for aneurysm treatment in the calcium chloride rat AAA model. Peak wall stress (PWS) and matrix metalloproteinase (MMP) activity, which are the biomechanical and biological markers of AAA growth and rupture, were evaluated over 4 weeks in untreated and treated (with PGG) groups. The AAA specimens were mechanically characterized by planar biaxial tensile testing and the data fitted to a five-parameter nonlinear, hyperelastic, anisotropic Holzapfel–Gasser–Ogden (HGO) material model, which was used to perform finite element analysis (FEA) to evaluate PWS. Our results demonstrated that there was a reduction in PWS between pre- and post-AAA induction FEA models in the treatment group compared to the untreated group using either animal-specific or average material properties. However, this reduction was not statistically significant. Conversely, there was a statistically significant reduction in MMP-activated fluorescent signal between pre- and post-AAA induction models in the treated group compared to the untreated group. Therefore, the primary contribution of this work is the quantification of the stabilizing effects of PGG using biomechanical and biological markers of AAA, thus indicating that PGG could be part of a new clinical treatment strategy that will require further investigation.

References

1.
Michel
,
J.-B.
,
Martin-Ventura
,
J.-L.
,
Egido
,
J.
,
Sakalihasan
,
N.
,
Treska
,
V.
,
Lindholt
,
J.
,
Allaire
,
E.
,
Thorsteinsdottir
,
U.
,
Cockerill
,
G.
, and
Swedenborg
,
J.
,
2011
, “
Novel Aspects of the Pathogenesis of Aneurysms of the Abdominal Aorta in Humans
,”
Cardiovasc. Res.
,
90
(
1
), pp.
18
27
.
2.
Hellenthal
,
F. A. M. V. I.
,
Buurman
,
W. A.
,
Wodzig
,
W. K. W. H.
, and
Schurink
,
G. W. H.
,
2009
, “
Biomarkers of AAA Progression—Part 1: Extracellular Matrix Degeneration
,”
Nat. Rev. Cardiol.
,
6
(
7
), pp.
464
474
.
3.
Hellenthal
,
F. A. M. V. I.
,
Buurman
,
W. A.
,
Wodzig
,
W. K. W. H.
, and
Schurink
,
G. W. H.
,
2009
, “
Biomarkers of Abdominal Aortic Aneurysm Progression—Part 2: Inflammation
,”
Nat. Rev. Cardiol.
,
6
(
8
), pp.
543
552
.
4.
Nordon
,
I. M.
,
Hinchliffe
,
R. J.
,
Loftus
,
I. M.
, and
Thompson
,
M. M.
,
2011
, “
Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms
,”
Nat. Rev. Cardiol.
,
8
(
2
), pp.
92
102
.
5.
Dobrin
,
P. B.
,
Baker
,
W. H.
, and
Gley
,
W. C.
,
1984
, “
Elastolytic and Collagenolytic Studies of Arteries: Implications for the Mechanical Properties of Aneurysms
,”
Arch. Surg.
,
119
(
4
), pp.
405
409
.
6.
Lysgaard Poulsen
,
J.
,
Stubbe
,
J.
, and
Lindholt
,
J. S.
,
2016
, “
Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review
,”
Eur. J. Vasc. Endovascular Surg.
,
52
(
4
), pp.
487
499
.
7.
Longo
,
G. M.
,
Xiong
,
W.
,
Greiner
,
T. C.
,
Zhao
,
Y.
,
Fiotti
,
N.
, and
Baxter
,
B. T.
,
2002
, “
Matrix Metalloproteinases 2 and 9 Work in Concert to Produce Aortic Aneurysms," the
,”
J. Clin. Invest.
,
110
(
5
), pp.
625
632
.
8.
Vorp
,
D. A.
, and
van de Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Aeterioscler., Thromb., Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.
9.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
10.
Speelman
,
L.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
Hellenthal
,
F. A.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
van de Vosse
,
F. N.
,
2008
, “
Patient-Specific AAA Wall Stress Analysis: 99-Percentile Versus Peak Stress
,”
Eur. J. Vasc. Endovascular Surg.
,
36
(
6
), pp.
668
76
.
11.
Isenburg
,
J. C.
,
Simionescu
,
D. T.
,
Starcher
,
B. C.
, and
Vyavahare
,
N. R.
,
2007
, “
Elastin Stabilization for Treatment of Abdominal Aortic Aneurysms
,”
Circulation
,
115
(
13
), pp.
1729
1737
.
12.
Nosoudi
,
N.
,
Chowdhury
,
A.
,
Siclari
,
S.
,
Parasaram
,
V.
,
Karamched
,
S.
, and
Vyavahare
,
N.
,
2016
, “
Systemic Delivery of Nanoparticles Loaded With Pentagalloyl Glucose Protects Elastic Lamina and Prevents Abdominal Aortic Aneurysm in Rats
,”
J. Cardiovasc. Trans. Res.
,
9
(
5–6
), pp.
445
455
.
13.
Goergen
,
C. J.
,
Azuma
,
J.
,
Barr
,
K. N.
,
Magdefessel
,
L.
,
Kallop
,
D. Y.
,
Gogineni
,
A.
,
Grewall
,
A.
,
Weimer
,
R. M.
,
Connolly
,
A. J.
,
Dalman
,
R. L.
,
Taylor
,
C. A.
,
Tsao
,
P. S.
, and
Greve
,
J. M.
,
2011
, “
Influences of Aortic Motion and Curvature on Vessel Expansion in Murine Experimental Aneurysms
,”
Arterioscler. Thromb. Vasc. Biol.
,
31
(
2
), pp.
270
279
.
14.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1
), pp.
1
48
.
15.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
16.
Badel
,
P.
,
Avril
,
S.
,
Lessner
,
S.
, and
Sutton
,
M.
,
2012
, “
Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
37
48
.
17.
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2016
, “
Artery Buckling Analysis Using a Two-Layered Wall Model With Collagen Dispersion
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
515
524
.
18.
Shum
,
J.
,
dimartino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Pater
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.
19.
Yamanouchi
,
D.
,
Morgan
,
S.
,
Stair
,
C.
,
Seedial
,
S.
,
Lengfeld
,
J.
,
Kent
,
K. C.
, and
Liu
,
B.
,
2012
, “
Accelerated Aneurysmal Dilation Associated With Apoptosis and Inflammation in a Newly Developed Calcium Phosphate Rodent Abdominal Aortic Aneurysm Model
,”
J. Vasc. Surg.
,
56
(
2
), pp.
455
461
.
20.
Chiou
,
A. C.
,
Chiu
,
B.
, and
Pearce
,
W. H.
,
2001
, “
Murine Aortic Aneurysm Produced by Periarterial Application of Calcium Chloride
,”
J. Surg. Res.
,
99
(
2
), pp.
371
376
.
21.
Xiong
,
W.
,
Knispel
,
R.
,
Mactaggart
,
J.
, and
Baxter
,
B. T.
,
2006
, “
Effects of Tissue Inhibitor of Metalloproteinase 2 Deficiency on Aneurysm Formation
,”
J. Vasc. Surg.
,
44
(
5
), pp.
1061
1066
.
22.
Tamarina
,
N. A.
,
mcmillan
,
W. D.
,
Shively
,
V. P.
, and
Pearce
,
W. H.
,
1997
, “
Expression of Matrix Metalloproteinases and Their Inhibitors in Aneurysms and Normal Aorta
,”
Surgery
,
122
(
2
), pp.
264
272
.
23.
Nosoudi
,
N.
,
Chowdhury
,
A.
,
Siclari
,
S.
,
Kramched
,
S.
,
Parasaram
,
V.
,
Parrish
,
J.
,
Gerard
,
P.
, and
Vyavahare
,
N.
,
2016
, “
Reversal of Vascular Calcification and Aneurysms in a Rat Model Using Dual Targeted Therapy With EDTA- and PGG-Loaded Nanoparticles
,”
Theranostics
,
6
(
11
), pp.
1975
1987
.
You do not currently have access to this content.