Abstract

Our understanding of aortic biomechanics is customarily limited by lack of information on the axial residual stretches of the vessel in both humans and experimental animals that would facilitate the identification of its actual zero-stress state. The aim of this study was thus to acquire hitherto unreported quantitative knowledge of axial opening angle and residual stretches in different segments and quadrants of the human aorta according to age and gender. Twenty-three aortas were harvested during autopsy from the aortic root to the iliac bifurcation and were divided into ≥12 segments and 4 quadrants. Morphometric measurements were taken in the excised/curled configuration of rectangular strips considered to be under zero-stress using image-analysis software to study the axial/circumferential variation of axial opening angle, internal/external residual stretch, and thickness of the aortic wall. The measured data demonstrated: (1) an axial opening angle peak at the arch branches, decreasing toward the ascending and to a near-constant value in the descending thoracic aorta, and increasing in the abdominal aorta; (2) the variation of residual stretches resembled that of opening angle, but axial differences in external residual stretch were more prominent; (3) wall thickness showed a progressive diminution along the vessel; (4) the highest opening angle/residual stretches were found in the inner quadrant and the lowest in the outer quadrant; (5) the anterior was the thinnest quadrant throughout the aorta; (6) age caused thickening but greatly reduced axial opening angle/residual stretches, without differences between males and females.

References

1.
Boudoulas
,
H.
, and
Wooley
,
C. F.
,
1996
, “
Aortic Function
,”
Functional Abnormalities of the Aorta
,
H.
Boudoulas
,
P. K.
Toutouzas
, and
C. F.
Wooley
, eds.,
Futura Publishing
,
New York
, pp.
3
36
.
2.
Nichols
,
W. W.
,
O'Rourke
,
M. F.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles
, 6th ed.,
Hodder Arnold
,
London
.
3.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
, 1st ed.,
Springer-Verlag
,
New York
.
4.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stress in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.10.1115/1.3138600
5.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1987
, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
,
20
(
3
), pp.
235
239
.10.1016/0021-9290(87)90290-9
6.
Fung
,
Y. C.
,
1991
, “
What Are the Residual Stresses Doing in Our Blood Vessels?
,”
Ann. Biomed. Eng.
,
19
(
3
), pp.
237
249
.10.1007/BF02584301
7.
Rachev
,
A.
, and
Greenwald
,
S.
,
2003
, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
,
36
(
5
), pp.
661
670
.10.1016/S0021-9290(02)00444-X
8.
Sokolis
,
D. P.
,
2015
, “
Effects of Aneurysm on the Directional, Regional, and Layer Distribution of Residual Strains in Ascending Thoracic Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
229
243
.10.1016/j.jmbbm.2015.01.024
9.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodelling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.10.1080/10255840801930710
10.
Cardamone
,
L.
,
Valentin
,
A.
,
Eberth
,
J. F.
, and
Humphrey
,
J. D.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
431
446
.10.1007/s10237-008-0146-x
11.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1988
, “
Zero-Stress States of Arteries
,”
ASME J. Biomech. Eng.
,
110
(
1
), pp.
82
84
.10.1115/1.3108410
12.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Species Dependence of the Zero-Stress State of the Aorta: Pig Versus Rat
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
446
451
.10.1115/1.2895425
13.
Saini
,
A.
,
Berry
,
C.
, and
Greenwald
,
S.
,
1995
, “
Effect of Age and Sex on Residual Stress in the Aorta
,”
J. Vasc. Res.
,
32
(
6
), pp.
398
405
.10.1159/000159115
14.
Guo
,
X.
,
Kono
,
Y.
,
Mattrey
,
R.
, and
Kassab
,
G. S.
,
2002
, “
Morphometry and Strain Distribution of the C57BL/6 Mouse Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
5
), pp.
H1829
H1837
.10.1152/ajpheart.00224.2002
15.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.10.1016/j.jmbbm.2016.12.003
16.
Vossoughi
,
J.
,
1992
, “
Longitudinal Residual Strain in Arteries
,”
11th Southern Biomedical Engineering Conference
, Memphis, TN, Oct. 2–4, pp.
17
19
.
17.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Auer
,
M.
,
Regitnig
,
P.
, and
Ogden
,
R. W.
,
2007
, “
Layer-Specific 3D Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
530
545
.10.1007/s10439-006-9252-z
18.
Sommer
,
G.
,
Regitnig
,
P.
,
Koltringer
,
L.
, and
Holzapfel
,
G. A.
,
2010
, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supraphysiological Loadings
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
3
), pp.
H898
H912
.10.1152/ajpheart.00378.2009
19.
Wang
,
R.
, and
Gleason
,
R. L.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.10.1007/s10439-010-9916-6
20.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
21.
Sokolis
,
D. P.
,
2007
, “
Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis
,”
Acta Physiol.
,
190
(
4
), pp.
277
289
.10.1111/j.1748-1716.2006.01661.x
22.
Zeinali-Davarani
,
S.
,
Wang
,
Y.
,
Chow
,
M. J.
,
Turcotte
,
R.
, and
Zhang
,
Y.
,
2015
, “
Contribution of Collagen Fiber Undulation to Regional Biomechanical Properties Along Porcine Thoracic Aorta
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051001
.10.1115/1.4029637
23.
Peña
,
J. A.
,
Corral
,
V.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2018
, “
Over Length Quantification of the Multiaxial Mechanical Properties of the Ascending, Descending and Abdominal Aorta Using Digital Image Correlation
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
434
445
.10.1016/j.jmbbm.2017.10.007
24.
Sokolis
,
D. P.
,
Boudoulas
,
H.
,
Kavantzas
,
N. G.
,
Kostomitsopoulos
,
N.
,
Agapitos
,
E. V.
, and
Karayannacos
,
P. E.
,
2002
, “
A Morphometric Study of the Structural Characteristics of the Aorta in Pigs Using an Image Analysis Method
,”
Anat. Histol. Embryol.
,
31
(
1
), pp.
21
30
.10.1046/j.1439-0264.2002.00356.x
25.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.10.1016/j.jbiomech.2008.11.011
26.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1996
, “
Direct Measurement of Transverse Residual Strains in Aorta
,”
Am. J. Physiol.
,
270
(
2
), pp.
H750
H759
.10.1152/ajpheart.1996.270.2.H750
27.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
28.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Lampropoulos
,
K. M.
,
Papadodima
,
S. A.
, and
Iliopoulos
,
D. C.
,
2012
, “
Biomechanical Response of Ascending Thoracic Aortic Aneurysms: Association With Structural Remodelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
231
248
.10.1080/10255842.2010.522186
29.
Kermani
,
G.
,
Hemmasizadeh
,
A.
,
Assari
,
S.
,
Autieri
,
M.
, and
Darvish
,
K.
,
2017
, “
Investigation of Inhomogeneous and Anisotropic Material Behavior of Porcine Thoracic Aorta Using Nano-Indentation Tests
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
50
56
.10.1016/j.jmbbm.2016.12.022
30.
Krüger
,
T.
,
Veseli
,
K.
,
Lausberg
,
H.
,
Vöhringer
,
L.
,
Schneider
,
W.
, and
Schlensak
,
C.
,
2016
, “
Regional and Directional Compliance of the Healthy Aorta: An Ex Vivo Study in a Porcine Model
,”
Interact. Cardiovasc. Thorac. Surg.
,
23
(
1
), pp.
104
111
.10.1093/icvts/ivw053
31.
Waddell
,
T. K.
,
Dart
,
A. M.
,
Gatzka
,
C. D.
,
Cameron
,
J. D.
, and
Kingwell
,
B. A.
,
2001
, “
Women Exhibit a Greater Age-Related Increase in Proximal Aortic Stiffness Than Men
,”
J. Hypertens.
,
19
(
12
), pp.
2205
2212
.10.1097/00004872-200112000-00014
32.
Vande Geest
,
J. P.
,
Dillavou
,
E. D.
,
Di Martino
,
E. S.
,
Oberdier
,
M.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Gender-Related Differences in the Tensile Strength of Abdominal Aortic Aneurysms
,”
Ann. N. Y. Acad. Sci.
,
1085
(
1
), pp.
400
402
.10.1196/annals.1383.048
33.
Sokolis
,
D. P.
, and
Iliopoulos
,
D. C.
,
2014
, “
Impaired Mechanics and Matrix Metalloproteinases/Inhibitors Expression in Female Ascending Thoracic Aortic Aneurysms
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
154
164
.10.1016/j.jmbbm.2014.02.015
34.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. R. Soc. Interface
,
7
(
46
), pp.
787
799
.10.1098/rsif.2009.0357
35.
Huo
,
Y.
,
Zhao
,
X.
,
Cheng
,
Y.
,
Lu
,
X.
, and
Kassab
,
G. S.
,
2013
, “
Two Layer Model of Coronary Artery Vasoactivity
,”
J. Appl. Physiol.
,
114
(
10
), pp.
1451
1459
.10.1152/japplphysiol.01237.2012
36.
Ren
,
J.
, and
Zheng
,
X.
,
2016
, “
Effects of Three Dimensional Residual Stresses on the Mechanical Properties of Arterial Wall
,”
J. Theor. Biol.
,
393
, pp.
118
126
.10.1016/j.jtbi.2015.12.015
37.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
38.
Rachev
,
A.
,
Greenwald
,
S.
, and
Shazly
,
T.
,
2013
, “
Are Geometrical and Structural Variations Along the Length of the Aorta Governed by a Principle of ‘Optimal Mechanical Operation?’
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
81006
.10.1115/1.4024664
39.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
,
1966
, “
Alterations With Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
(
3
), pp.
278
292
.10.1161/01.RES.18.3.278
40.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1995
, “
Longitudinal Strain of Canine and Porcine Aortas
,”
J. Biomech.
,
28
(
5
), pp.
637
641
.10.1016/0021-9290(94)00091-H
41.
Horný
,
L.
,
Adámek
,
T.
, and
Kulvajtová
,
M.
,
2017
, “
A Comparison of Age-Related Changes in Axial Prestretch in Human Carotid Arteries and in Human Abdominal Aorta
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
375
383
.10.1007/s10237-016-0797-y
42.
Azuma
,
T.
, and
Hasegawa
,
M.
,
1971
, “
A Rheological Approach to the Architecture of Arterial Walls
,”
Jpn. J. Physiol.
,
21
(
1
), pp.
27
47
.10.2170/jjphysiol.21.27
43.
Tonar
,
Z.
,
Kubíková
,
T.
,
Prior
,
C.
,
Demjén
,
E.
,
Liška
,
V.
,
Králíčková
,
M.
, and
Witter
,
K.
,
2015
, “
Segmental and Age Differences in the Elastin Network, Collagen, and Smooth Muscle Phenotype in the Tunica Media of the Porcine Aorta
,”
Ann. Anat.
,
201
, pp.
79
90
.10.1016/j.aanat.2015.05.005
44.
Matsumoto
,
T.
,
Tsuchida
,
M.
, and
Sato
,
M.
,
1996
, “
Change in Intramural Strain Distribution in Rat Aorta Due to Smooth Muscle Contraction and Relaxation
,”
Am. J. Physiol.
,
271
(
4 Pt 2
), pp.
H1711
H1716
.10.1152/ajpheart.1996.271.4.H1711
45.
Matsumoto
,
T.
,
Hayashi
,
K.
, and
Ide
,
K.
,
1995
, “
Residual Strain and Local Strain Distributions in the Rabbit Atherosclerotic Aorta
,”
J. Biomech.
,
28
(
10
), pp.
1207
1217
.10.1016/0021-9290(94)00179-8
You do not currently have access to this content.