Abstract

Density and mechanical properties (e.g., compressibility or bulk modulus) are important cellular biophysical markers. As such, developing a method to separate cells directly based on these properties can benefit various applications including biological research, diagnosis, prognosis, and therapeutics. As a potential solution, surface acoustic wave (SAW)-based cell separation has demonstrated advantages in terms of biocompatibility and compact device size. However, most SAW-reliant cell separations are achieved using an entangled effect of density, various mechanical properties, and size. In this work, we demonstrate SAW-based separation of cells/particles based on their density and compressibility, irrespective of their sizes, by manipulating the acoustic properties of the fluidic medium. Using our platform, SAW-based separation is achieved by varying the dimensions of the microfluidic channels, the wavelengths of acoustic signals, and the properties of the fluid media. Our method was applied to separate paraformaldehyde-treated and fresh Hela cells based on differences in mechanical properties; a recovery rate of 85% for fixed cells was achieved. It was also applied to separate red blood cells (RBCs) and white blood cells (WBCs) which have different densities. A recovery rate of 80.5% for WBCs was achieved.

References

1.
Di Carlo
,
D.
,
2012
, “
A Mechanical Biomarker of Cell State in Medicine
,”
J. Lab. Autom.
,
17
(
1
), pp.
32
42
.10.1177/2211068211431630
2.
Grover
,
W. H.
,
Bryan
,
A. K.
,
Diez-Silva
,
M.
,
Suresh
,
S.
,
Higgins
,
J. M.
, and
Manalis
,
S. R.
,
2011
, “
Measuring Single-Cell Density
,”
Proc. Natl. Acad. Sci.
,
108
(
27
), pp.
10992
10996
.10.1073/pnas.1104651108
3.
Polacheck
,
W. J.
,
Li
,
R.
,
Uzel
,
S. G. M.
, and
Kamm
,
R. D.
,
2013
, “
Microfluidic Platforms for Mechanobiology
,”
Lab Chip
,
13
(
12
), pp.
2252
2267
.10.1039/c3lc41393d
4.
Liu
,
H.
,
Tan
,
Q.
,
Geddie
,
W. R.
,
Jewett
,
M. A. S.
,
Phillips
,
N.
,
Ke
,
D.
,
Simmons
,
C. A.
, and
Sun
,
Y.
,
2014
, “
Biophysical Characterization of Bladder Cancer Cells With Different Metastatic Potential
,”
Cell Biochem. Biophys.
,
68
(
2
), pp.
241
246
.10.1007/s12013-013-9702-9
5.
Huisjes
,
R.
,
Bogdanova
,
A.
,
van Solinge
,
W. W.
,
Schiffelers
,
R. M.
,
Kaestner
,
L.
, and
van Wijk
,
R.
,
2018
, “
Squeezing for Life—Properties of Red Blood Cell Deformability
,”
Front. Physiol.
,
9
, pp.
1
22
.10.3389/fphys.2018.00656
6.
Hoffman
,
B. D.
, and
Crocker
,
J. C.
,
2009
, “
Cell Mechanics: Dissecting the Physical Responses of Cells to Force
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
259
288
.10.1146/annurev.bioeng.10.061807.160511
7.
Mao
,
X.
, and
Huang
,
T. J.
,
2012
, “
Exploiting Mechanical Biomarkers in Microfluidics
,”
Lab Chip
,
12
(
20
), pp.
4006
4009
.10.1039/c2lc90100e
8.
Suresh
,
S.
,
2007
, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
438
.10.1016/j.actbio.2007.04.002
9.
Xu
,
W.
,
Mezencev
,
R.
,
Kim
,
B.
,
Wang
,
L.
,
McDonald
,
J.
, and
Sulchek
,
T.
,
2012
, “
Cell Stiffness is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells
,”
PLoS One
,
7
(
10
), p.
e46609
.10.1371/journal.pone.0046609
10.
Wei
,
F.
,
Lillehoj
,
P. B.
, and
Ho
,
C.
,
2010
, “
DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids
,”
Pediatr. Res.
,
67
(
5
), pp.
458
468
.10.1203/PDR.0b013e3181d361c3
11.
Pisanic Ii
,
T. R.
,
Zhang
,
Y.
, and
Wang
,
T. H.
,
2014
, “
Quantum Dots in Diagnostics and Detection: Principles and Paradigms
,”
Analyst
,
139
(
12
), pp.
2968
2981
.10.1039/C4AN00294F
12.
Ndukaife
,
J. C.
,
Mishra
,
A.
,
Guler
,
U.
,
Nnanna
,
A. G. A.
,
Wereley
,
S. T.
, and
Boltasseva
,
A.
,
2014
, “
Photothermal Heating Enabled by Plasmonic Nanostructures for Electrokinetic Manipulation and Sorting of Particles
,”
ACS Nano
,
8
(
9
), pp.
9035
9043
.10.1021/nn502294w
13.
Guo
,
F.
,
French
,
J. B.
,
Li
,
P.
,
Zhao
,
H.
,
Chan
,
C. Y.
,
Fick
,
J. R.
,
Benkovic
,
S. J.
, and
Huang
,
T. J.
,
2013
, “
Probing Cell–Cell Communication With Microfluidic Devices
,”
Lab Chip
,
13
(
16
), pp.
3152
3162
.10.1039/c3lc90067c
14.
Tsutsui
,
H.
, and
Ho
,
C.-M.
,
2009
, “
Cell Separation by Non-Inertial Force Fields in Microfluidic Systems
,”
Mech. Res. Commun.
,
36
(
1
), pp.
92
103
.10.1016/j.mechrescom.2008.08.006
15.
English
,
D.
, and
Andersen
,
B. R.
,
1974
, “
Single-Step Separation of Red Blood Cells, Granulocytes and Mononuclear Leukocytes on Discontinuous Density Gradients of Ficoll-Hypaque
,”
J. Immunol. Methods
,
5
(
3
), pp.
249
252
.10.1016/0022-1759(74)90109-4
16.
Bow
,
H.
,
Pivkin
,
I. V.
,
Diez-Silva
,
M.
,
Goldfless
,
S. J.
,
Dao
,
M.
,
Niles
,
J. C.
,
Suresh
,
S.
, and
Han
,
J.
,
2011
, “
A Microfabricated Deformability-Based Flow Cytometer With Application to Malaria
,”
Lab Chip
,
11
(
6
), pp.
1065
1073
.10.1039/c0lc00472c
17.
Zhang
,
Z.
,
Xu
,
J.
,
Hong
,
B.
, and
Chen
,
X.
,
2014
, “
The Effects of 3D Channel Geometry on CTC Passing Pressure-Towards Deformability-Based Cancer Cell Separation
,”
Lab Chip
,
14
(
14
), pp.
2576
2584
.10.1039/C4LC00301B
18.
Wang
,
G.
,
Mao
,
W.
,
Byler
,
R.
,
Patel
,
K.
,
Henegar
,
C.
,
Alexeev
,
A.
, and
Sulchek
,
T.
,
2013
, “
Stiffness Dependent Separation of Cells in a Microfluidic Device
,”
PLoS One
,
8
(
10
), p.
e75901
.10.1371/journal.pone.0075901
19.
Van Den Bergh
,
J. P. W.
,
Van Lenthe
,
G. H.
,
Hermus
,
A. R. M. M.
,
Corstens
,
F. H. M.
,
Smals
,
A. G. H.
, and
Huiskes
,
R.
,
2000
, “
Speed of Sound Reflects Young’s Modulus as Assessed by Microstructural Finite Element Analysis
,”
Bone
,
26
(
5
), pp.
519
524
.10.1016/S8756-3282(00)00249-0
20.
Wang
,
G.
,
Crawford
,
K.
,
Turbyfield
,
C.
,
Lam
,
W.
,
Alexeev
,
A.
, and
Sulchek
,
T.
,
2015
, “
Microfluidic Cellular Enrichment and Separation Through Differences in Viscoelastic Deformation
,”
Lab Chip
,
15
(
2
), pp.
532
540
.10.1039/C4LC01150C
21.
Lin
,
B. K.
,
McFaul
,
S. M.
,
Jin
,
C.
,
Black
,
P. C.
, and
Ma
,
H.
,
2013
, “
Highly Selective Biomechanical Separation of Cancer Cells From Leukocytes Using Microfluidic Ratchets and Hydrodynamic Concentrator
,”
Biomicrofluidics
,
7
(
3
), p.
034114
.10.1063/1.4812688
22.
Hur
,
S. C.
,
Henderson-MacLennan
,
N. K.
,
McCabe
,
E. R. B.
, and
Di Carlo
,
D.
,
2011
, “
Deformability-Based Cell Classification and Enrichment Using Inertial Microfluidics
,”
Lab Chip
,
11
(
5
), pp.
912
920
.10.1039/c0lc00595a
23.
Yang
,
S.
,
Lee
,
S. S.
,
Ahn
,
S. W.
,
Kang
,
K.
,
Shim
,
W.
,
Lee
,
G.
,
Hyun
,
K.
, and
Kim
,
J. M.
,
2012
, “
Deformability-Selective Particle Entrainment and Separation in a Rectangular Microchannel Using Medium Viscoelasticity
,”
Soft Matter
,
8
(
18
), pp.
5011
5019
.10.1039/c2sm07469a
24.
Holmes
,
D.
,
Whyte
,
G.
,
Bailey
,
J.
,
Vergara-Irigaray
,
N.
,
Ekpenyong
,
A.
,
Guck
,
J.
, and
Duke
,
T.
,
2014
, “
Separation of Blood Cells With Differing Deformability Using Deterministic Lateral Displacement
,”
Interface Focus
,
4
(
6
), p.
20140011
.10.1098/rsfs.2014.0011
25.
Hvichia
,
G. E.
,
Parveen
,
Z.
,
Wagner
,
C.
,
Janning
,
M.
,
Quidde
,
J.
,
Stein
,
A.
,
Müller
,
V.
,
Loges
,
S.
,
Neves
,
R. P. L.
,
Stoecklein
,
N. H.
,
Wikman
,
H.
,
Riethdorf
,
S.
,
Pantel
,
K.
, and
Gorges
,
T. M.
,
2016
, “
A Novel Microfluidic Platform for Size and Deformability Based Separation and the Subsequent Molecular Characterization of Viable Circulating Tumor Cells
,”
Int. J. Cancer
,
138
(
12
), pp.
2894
2904
.10.1002/ijc.30007
26.
Yeo
,
L. Y.
, and
Friend
,
J. R.
,
2014
, “
Surface Acoustic Wave Microfluidics
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
379
406
.10.1146/annurev-fluid-010313-141418
27.
Tian
,
Z.
,
Yang
,
S.
,
Huang
,
P.-H.
,
Wang
,
Z.
,
Zhang
,
P.
,
Gu
,
Y.
,
Bachman
,
H.
,
Chen
,
C.
,
Wu
,
M.
,
Xie
,
Y.
, and
Huang
,
T. J.
,
2019
, “
Wave Number–Spiral Acoustic Tweezers for Dynamic and Reconfigurable Manipulation of Particles and Cells
,”
Sci. Adv.
,
5
(
5
), p.
eaau6062
.10.1126/sciadv.aau6062
28.
Zhang
,
S. P.
,
Lata
,
J.
,
Chen
,
C.
,
Mai
,
J.
,
Guo
,
F.
,
Tian
,
Z.
,
Ren
,
L.
,
Mao
,
Z.
,
Huang
,
P.-H.
,
Li
,
P.
,
Yang
,
S.
, and
Huang
,
T. J.
,
2018
, “
Digital Acoustofluidics Enables Contactless and Programmable Liquid Handling
,”
Nat. Commun.
,
9
(
1
), p.
2928
.10.1038/s41467-018-05297-z
29.
Li
,
P.
, and
Huang
,
T. J.
,
2019
, “
Applications of Acoustofluidics in Bioanalytical Chemistry
,”
Anal. Chem.
,
91
(
1
), pp.
757
767
.10.1021/acs.analchem.8b03786
30.
Xie
,
Y.
,
Bachman
,
H.
, and
Huang
,
T. J.
,
2019
, “
Acoustofluidic Methods in Cell Analysis
,”
TrAC Trends Anal. Chem.
,
117
, pp.
280
290
.10.1016/j.trac.2019.06.034
31.
Wu
,
M.
,
Ozcelik
,
A.
,
Rufo
,
J.
,
Wang
,
Z.
,
Fang
,
R.
, and
Jun Huang
,
T.
,
2019
, “
Acoustofluidic Separation of Cells and Particles
,”
Microsystems Nanoeng.
,
5
(
1
), p.
32
.10.1038/s41378-019-0064-3
32.
Wu
,
M.
,
Huang
,
P.-H.
,
Zhang
,
R.
,
Mao
,
Z.
,
Chen
,
C.
,
Kemeny
,
G.
,
Li
,
P.
,
Lee
,
A. V.
,
Gyanchandani
,
R.
,
Armstrong
,
A. J.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
,
2018
, “
Circulating Tumor Cell Phenotyping Via High-Throughput Acoustic Separation
,”
Small
,
14
(
32
), p.
1801131
.10.1002/smll.201801131
33.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
,
2018
, “
Acoustic Tweezers for the Life Sciences
,”
Nat. Methods
,
15
(
12
), pp.
1021
1028
.10.1038/s41592-018-0222-9
34.
Wu
,
M.
,
Ouyang
,
Y.
,
Wang
,
Z.
,
Zhang
,
R.
,
Huang
,
P.-H.
,
Chen
,
C.
,
Li
,
H.
,
Li
,
P.
,
Quinn
,
D.
,
Dao
,
M.
,
Suresh
,
S.
,
Sadovsky
,
Y.
, and
Huang
,
T. J.
,
2017
, “
Isolation of Exosomes From Whole Blood by Integrating Acoustics and Microfluidics
,”
Proc. Natl. Acad. Sci.
,
114
(
40
), pp.
10584
10589
.10.1073/pnas.1709210114
35.
Augustsson
,
P.
,
Magnusson
,
C.
,
Nordin
,
M.
,
Lilja
,
H.
, and
Laurell
,
T.
,
2012
, “
Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis
,”
Anal. Chem.
,
84
(
18
), pp.
7954
7962
.10.1021/ac301723s
36.
Antfolk
,
M.
,
Magnusson
,
C.
,
Augustsson
,
P.
,
Lilja
,
H.
, and
Laurell
,
T.
,
2015
, “
Acoustofluidic, Label-Free Separation and Simultaneous Concentration of Rare Tumor Cells From White Blood Cells
,”
Anal. Chem.
,
87
(
18
), pp.
9322
9328
.10.1021/acs.analchem.5b02023
37.
Franke
,
T.
,
Braunmüller
,
S.
,
Schmid
,
L.
,
Wixforth
,
A.
, and
Weitz
,
D. A.
,
2010
, “
Surface Acoustic Wave Actuated Cell Sorting (SAWACS)
,”
Lab Chip
,
10
(
6
), pp.
789
794
.10.1039/b915522h
38.
Bourquin
,
Y.
,
Syed
,
A.
,
Reboud
,
J.
,
Ranford-Cartwright
,
L. C.
,
Barrett
,
M. P.
, and
Cooper
,
J. M.
,
2014
, “
Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics
,”
Angew. Chem. Int. Ed.
,
53
(
22
), pp.
5587
5590
.10.1002/anie.201310401
39.
Collins
,
D. J.
,
Alan
,
T.
, and
Neild
,
A.
,
2014
, “
Particle Separation Using Virtual Deterministic Lateral Displacement (VDLD)
,”
Lab Chip
,
14
(
9
), pp.
1595
1603
.10.1039/C3LC51367J
40.
Destgeer
,
G.
,
Lee
,
K. H.
,
Jung
,
J. H.
,
Alazzam
,
A.
, and
Sung
,
H. J.
,
2013
, “
Continuous Separation of Particles in a PDMS Microfluidic Channel Via Travelling Surface Acoustic Waves (TSAW)
,”
Lab Chip
,
13
(
21
), pp.
4210
4216
.10.1039/c3lc50451d
41.
Ma
,
Z.
,
Collins
,
D. J.
, and
Ai
,
Y.
,
2016
, “
Detachable Acoustofluidic System for Particle Separation Via a Traveling Surface Acoustic Wave
,”
Anal. Chem.
,
88
(
10
), pp.
5316
5323
.10.1021/acs.analchem.6b00605
42.
Yunus
,
D. E.
,
Sohrabi
,
S.
,
He
,
R.
,
Shi
,
W.
, and
Liu
,
Y.
,
2017
, “
Acoustic Patterning for 3D Embedded Electrically Conductive Wire in Stereolithography
,”
J. Micromech. Microeng.
,
27
(
4
), p.
045016
.10.1088/1361-6439/aa62b7
43.
Shi
,
J.
,
Ahmed
,
D.
,
Mao
,
X.
,
Lin
,
S.-C. S.
,
Lawit
,
A.
, and
Huang
,
T. J.
,
2009
, “
Acoustic Tweezers: Patterning Cells and Microparticles Using Standing Surface Acoustic Waves (SSAW)
,”
Lab Chip
,
9
(
20
), pp.
2890
2895
.10.1039/b910595f
44.
Ding
,
X.
,
Peng
,
Z.
,
Lin
,
S.-C. S.
,
Geri
,
M.
,
Li
,
S.
,
Li
,
P.
,
Chen
,
Y.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
,
2014
, “
Cell Separation Using Tilted-Angle Standing Surface Acoustic Waves
,”
Proc. Natl. Acad. Sci.
,
111
(
36
), pp.
12992
12997
.10.1073/pnas.1413325111
45.
Lei
,
J.
,
Hill
,
M.
,
de León Albarrán
,
C. P.
, and
Glynne-Jones
,
P.
,
2018
, “
Effects of Micron Scale Surface Profiles on Acoustic Streaming
,”
Microfluid. Nanofluid.
,
22
(
12
), p.
140
.10.1007/s10404-018-2161-2
46.
Lei
,
J.
,
Glynne-Jones
,
P.
, and
Hill
,
M.
,
2016
, “
Modal Rayleigh-Like Streaming in Layered Acoustofluidic Devices
,”
Phys. Fluids
,
28
(
1
), p.
012004
.10.1063/1.4939590
47.
Bernassau
,
A. L.
,
Chun-Kiat
,
Ong
,
Yong
,
Ma
,
Macpherson
,
P. G. A.
,
Courtney
,
C. R. P.
,
Riehle
,
M.
,
Drinkwater
,
B. W.
, and
Cumming
,
D. R. S.
,
2011
, “
Two-Dimensional Manipulation of Micro Particles by Acoustic Radiation Pressure in a Heptagon Cell
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
10
), pp.
2132
2138
.10.1109/TUFFC.2011.2062
48.
Melde
,
K.
,
Choi
,
E.
,
Wu
,
Z.
,
Palagi
,
S.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2018
, “
Acoustic Fabrication Via the Assembly and Fusion of Particles
,”
Adv. Mater.
,
30
(
3
), p.
1704507
.10.1002/adma.201704507
49.
Wu
,
M.
,
Chen
,
K.
,
Yang
,
S.
,
Wang
,
Z.
,
Huang
,
P. H.
,
Mai
,
J.
,
Li
,
Z.
, and
Huang
,
T. J.
, 2018, “High-Throughput Cell Focusing and Separation via Acoustofluidic Tweezers,”
Lab Chip
, 18, pp.
3003
3010
.
50.
Aghaamoo
,
M.
,
Zhang
,
Z.
,
Chen
,
X.
, and
Xu
,
J.
,
2015
, “
Deformability-Based Circulating Tumor Cell Separation With Conical-Shaped Microfilters: Concept, Optimization, and Design Criteria
,”
Biomicrofluidics
,
9
(
3
), p.
034106
.10.1063/1.4922081
51.
Bruus
,
H.
,
2012
, “
Acoustofluidics 2: Perturbation Theory and Ultrasound Resonance Modes
,”
Lab Chip
,
12
(
1
), pp.
20
28
.10.1039/C1LC20770A
52.
Gorkov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys.-Dokl.
,
6
, pp.
773
775
.https://ui.adsabs.harvard.edu/abs/1962SPhD....6..773G/abstract
53.
Georgalis
,
Y.
,
Philipp
,
M.
,
Aleksandrova
,
R.
, and
Krüger
,
J. K.
,
2012
, “
Light Scattering Studies on Ficoll PM70 Solutions Reveal Two Distinct Diffusive Modes
,”
J. Colloid Interface Sci.
,
386
(
1
), pp.
141
147
.10.1016/j.jcis.2012.07.062
54.
Chen
,
B.
,
Wang
,
B.
,
Zhang
,
W. J.
,
Zhou
,
G.
,
Cao
,
Y.
, and
Liu
,
W.
,
2013
, “
Macromolecular Crowding Effect on Cartilaginous Matrix Production: A Comparison of Two-Dimensional and Three-Dimensional Models
,”
Tissue Eng., Part C
,
19
(
8
), pp.
586
595
.10.1089/ten.tec.2012.0408
55.
Rashid
,
R.
,
Raghunath
,
M.
, and
Wohland
,
T.
,
2011
, “
Macromolecular Crowding and Stem Cell Differentiation
,”
Biophys. J.
,
100
(
3
), pp.
142a
143a
.10.1016/j.bpj.2010.12.983
56.
Zeiger
,
A. S.
,
Loe
,
F. C.
,
Li
,
R.
,
Raghunath
,
M.
, and
Van Vliet
,
K. J.
,
2012
, “
Macromolecular Crowding Directs Extracellular Matrix Organization and Mesenchymal Stem Cell Behavior
,”
PLoS One
,
7
(
5
), p.
e37904
.10.1371/journal.pone.0037904
57.
Pretlow
,
T. G.
,
Boone
,
C. W.
,
Shrager
,
R. I.
, and
Weiss
,
G. H.
,
1969
, “
Rate Zonal Centrifugation in a Ficoll Gradient
,”
Anal. Biochem.
,
29
(
2
), pp.
230
237
.10.1016/0003-2697(69)90306-6
58.
Boyum
,
A.
,
1964
, “
Separation of White Blood Cells
,”
Nature
,
204
(
4960
), pp.
793
794
.10.1038/204793a0
59.
Ulla
,
K.
, and
Hallberg
,
T.
,
1983
, “
Separation of Lymphocyte Subsets by Expanding Velocity Sedimentation of E-Rosettes at Unit Gravity
,”
J. Immunol. Methods
,
59
, pp.
349
360
.10.1016/0022-1759(83)90195-3
60.
Wiklund
,
M.
,
2012
, “
Acoustofluidics 12: Biocompatibility and Cell Viability in Microfluidic Acoustic Resonators
,”
Lab Chip
,
12
(
11
), pp.
2018
2028
.10.1039/c2lc40201g
61.
Ding
,
X.
,
Lin
,
S.-C. S.
,
Kiraly
,
B.
,
Yue
,
H.
,
Li
,
S.
,
Chiang
,
I.-K.
,
Shi
,
J.
,
Benkovic
,
S. J.
, and
Huang
,
T. J.
,
2012
, “
On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves
,”
Proc. Natl. Acad. Sci.
,
109
(
28
), pp.
11105
11109
.10.1073/pnas.1209288109
62.
Kounis
,
N. G.
,
Soufras
,
G. D.
,
Tsigkas
,
G.
, and
Hahalis
,
G.
,
2015
, “
White Blood Cell Counts, Leukocyte Ratios, and Eosinophils as Inflammatory Markers in Patients With Coronary Artery Disease
,”
Clin. Appl. Thromb.
,
21
(
2
), pp.
139
143
.10.1177/1076029614531449
63.
Thavarajah
,
R.
,
Mudimbaimannar
,
V.
,
Rao
,
U.
,
Ranganathan
,
K.
, and
Elizabeth
,
J.
,
2012
, “
Chemical and Physical Basics of Routine Formaldehyde Fixation
,”
J. Oral Maxillofac. Pathol.
,
16
(
3
), pp.
400
405
.10.4103/0973-029X.102496
64.
Kim
,
S.-O.
,
Kim
,
J.
,
Okajima
,
T.
, and
Cho
,
N.-J.
,
2017
, “
Mechanical Properties of Paraformaldehyde-Treated Individual Cells Investigated by Atomic Force Microscopy and Scanning Ion Conductance Microscopy
,”
Nano Converg.
,
4
(
1
), p.
5
.10.1186/s40580-017-0099-9
You do not currently have access to this content.