Abstract

The lumbar facet capsular ligament, which surrounds and limits the motion of each facet joint in the lumbar spine, has been recognized as being mechanically significant and has been the subject of multiple mechanical characterization studies in the past. Those studies, however, were performed on isolated tissue samples and thus could not assess the mechanical state of the ligament in vivo, where the constraints of attachment to rigid bone and the force of the joint pressure lead to nonzero strain even when the spine is not loaded. In this work, we quantified these two effects using cadaveric lumbar spines (five spines, 20 total facet joints harvested from L2 to L5). The effect of joint pressure was measured by injecting saline into the joint space and tracking the 3D capsule surface motion via digital image correlation, and the prestrain due to attachment was measured by dissecting a large section of the tissue from the bone and by tracking the motion between the on-bone and free states. We measured joint pressures of roughly 15–40 kPa and local first principal strains of up to 25–50% when 0.3 mL of saline was injected into the joint space; the subsequent increase in pressure and strain were more modest for further increases in injection volume, possibly due to leakage of fluid from the joint. The largest stretches were in the bone-to-bone direction in the portions of the ligament spanning the joint space. When the ligament was released from the vertebrae, it shrank by an average of 4–5%, with local maximum (negative) principal strain values of up to 30%, on average. Based on these measurements and previous tests on isolated lumbar facet capsular ligaments, we conclude that the normal in vivo state of the facet capsular ligament is in tension, and that the collagen in the ligament is likely uncrimped even when the spine is not loaded.

References

1.
Jaumard
,
N. V.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071010
.10.1115/1.4004493
2.
Little
,
J. S.
, and
Khalsa
,
P. S.
,
2005
, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
15
24
.10.1115/1.1835348
3.
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1983
, “
The Mechanical Function of the Lumbar
,”
Spine (Phila. Pa. 1976)
,
8
(
3
), pp.
327
330
.10.1097/00007632-198304000-00017
4.
Yang
,
K. H.
, and
King
,
A. I.
,
1984
, “
Mechanism of Facet Load Transmission as a Hypothesis for Low-Back Pain
,”
Spine (Phila. Pa. 1976)
,
9
(
6
), pp.
557
565
.10.1097/00007632-198409000-00005
5.
Yamashita
,
T.
,
Minaki
,
Y.
,
Özaktay
,
A. C.
,
Cavanaugh
,
J. M.
, and
King
,
A. I.
,
1996
, “
A Morphological Study of the Fibrous Capsule of the Human Lumbar Facet Joint
,”
Spine (Phila. Pa. 1976)
,
21
(
5
), pp.
538
543
.10.1097/00007632-199603010-00002
6.
Claeson
,
A. A.
, and
Barocas
,
V. H.
,
2017
, “
Planar Biaxial Extension of the Lumbar Facet Capsular Ligament Reveals Significant in-Plane Shear Forces
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
127
136
.10.1016/j.jmbbm.2016.08.019
7.
Cohen
,
S. P.
, and
Raja
,
S. N.
,
2007
, “
Pathogenesis, Diagnosis, and Treatment of Lumbar Zygapophysial (Facet) Joint Pain
,”
Anesthesiology
,
106
(
3
), pp.
591
614
.10.1097/00000542-200703000-00024
8.
Bermel
,
E. A.
,
Thakral
,
S.
,
Claeson
,
A. A.
,
Ellingson
,
A. M.
, and
Barocas
,
V. H.
,
2020
, “
Asymmetric in-Plane Shear Behavior of Isolated Cadaveric Lumbar Facet Capsular Ligaments: Implications for Subject Specific Biomechanical Models
,”
J. Biomech.
,
105
, p. 109814.10.1016/j.jbiomech.2020.109814
9.
Gacek
,
E.
,
Bermel
,
E. A.
,
Ellingson
,
A. M.
, and
Barocas
,
V. H.
,
2021
, “
Through-Thickness Regional Variation in the Mechanical Characteristics of the Lumbar Facet Capsular Ligament
,”
Biomech. Model. Mechanobiol.
,
20
(
4
), pp.
1445
1457
.10.1007/s10237-021-01455-3
10.
Ianuzzi
,
A.
,
Little
,
J. S.
,
Chiu
,
J. B.
,
Baitner
,
A.
,
Kawchuk
,
G.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: I. During Physiological Motions
,”
Spine J.
,
4
(
2
), pp.
141
152
.10.1016/j.spinee.2003.07.008
11.
Bermel
,
E. A.
,
Barocas
,
V. H.
, and
Ellingson
,
A. M.
,
2018
, “
The Role of the Facet Capsular Ligament in Providing Spinal Stability
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
13
), pp.
712
721
.10.1080/10255842.2018.1514392
12.
Jaumard
,
N. V.
,
Bauman
,
J. A.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Pressure Measurement in the Cervical Spinal Facet Joint: Considerations for Maintaining Joint Anatomy and an Intact Capsule
,”
Spine (Phila. Pa. 1976)
,
36
(
15
), pp.
1197
1203
.10.1097/BRS.0b013e3181ee7de2
13.
Chaput
,
C. D.
,
Allred
,
J. J.
,
Pandorf
,
J. J.
,
Song
,
J.
, and
Rahm
,
M. D.
,
2013
, “
The Significance of Facet Joint Cross-Sectional Area on Magnetic Resonance Imaging in Relationship to Cervical Degenerative Spondylolisthesis
,”
Spine J.
,
13
(
8
), pp.
856
861
.10.1016/j.spinee.2013.01.021
14.
Fujiwara
,
A.
,
Tamai
,
K.
,
Yamato
,
M.
,
An
,
H. S.
,
Yoshida
,
H.
,
Saotome
,
K.
, and
Kurihashi
,
A.
,
1999
, “
The Relationship Between Facet Joint Osteoarthritis and Disc Degeneration of the Lumbar Spine: An MRI Study
,”
Eur. Spine J.
,
8
(
5
), pp.
396
401
.10.1007/s005860050193
15.
Solav
,
D.
,
Moerman
,
K. M.
,
Jaeger
,
A. M.
,
Genovese
,
K.
, and
Herr
,
H. M.
,
2018
, “
MultiDIC: An Open-Source Toolbox for Multi-View 3D Digital Image Correlation
,”
IEEE Access
,
6
, pp.
30520
30535
.10.1109/ACCESS.2018.2843725
16.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.10.1007/s11340-015-0009-1
17.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Takata
,
K.
,
Goel
,
V.
,
Duranceau
,
J.
, and
Krag
,
M.
,
1993
, “
Articular Facets of the Human Spine:Quantitative Three-Dimensional Anatomy
,”
Spine (Phila. Pa. 1976)
,
18
(
10
), pp.
1298
1310
.10.1097/00007632-199308000-00009
18.
Little
,
J. S.
, and
Khalsa
,
P. S.
,
2005
, “
Human Lumbar Spine Creep During Cyclic and Static Flexion: Creep Rate, Biomechanics, and Facet Joint Capsule Strain
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
391
401
.10.1007/s10439-005-1742-x
19.
Ban
,
E.
,
Zhang
,
S.
,
Zarei
,
V.
,
Barocas
,
V. H.
,
Winkelstein
,
B. A.
, and
Picu
,
C. R.
,
2017
, “
Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament Deformation
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071009
.10.1115/1.4036019
20.
Nagel
,
T. M.
,
Hadi
,
M. F.
,
Claeson
,
A. A.
,
Nuckley
,
D. J.
, and
Barocas
,
V. H.
,
2014
, “
Combining Displacement Field and Grip Force Information to Determine Mechanical Properties of Planar Tissue With Complicated Geometry
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
114501
.10.1115/1.4028193
21.
Ellingson
,
A. M.
,
Shaw
,
M. N.
,
Giambini
,
H.
, and
An
,
K. N.
,
2016
, “
Comparative Role of Disc Degeneration and Ligament Failure on Functional Mechanics of the Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1009
1018
.10.1080/10255842.2015.1088524
22.
Zarei
,
V.
,
Dhume
,
R. Y.
,
Ellingson
,
A. M.
,
Barocas
,
V. H.
,
Zarei
,
V.
,
Dhume
,
R. Y.
, and
Ellingson
,
A. M.
,
2018
, “
Multiscale Modelling of the Human Lumbar Facet Capsular Ligament: Analysing Spinal Motion From the Joint to the Neurons
,”
J. R. Soc. Interface
,
15
(
148
), p.
20180550
.10.1098/rsif.2018.0550
23.
Zarei
,
V.
,
Zhang
,
S.
,
Winkelstein
,
B. A.
, and
Barocas
,
V. H.
,
2017
, “
Tissue Loading and Microstructure Regulate the Deformation of Embedded Nerve Fibres: Predictions From Single-Scale and Multiscale Simulations
,”
J. R. Soc. Interface
,
14
(
135
), p.
20170326
.10.1098/rsif.2017.0326
24.
Cohen
,
S. P.
,
Bhaskar
,
A.
,
Bhatia
,
A.
,
Buvanendran
,
A.
,
Deer
,
T.
,
Garg
,
S.
,
Hooten
,
W. M.
,
Hurley
,
R. W.
,
Kennedy
,
D. J.
,
McLean
,
B. C.
,
Moon
,
J. Y.
,
Narouze
,
S.
,
Pangarkar
,
S.
,
Provenzano
,
D. A.
,
Rauck
,
R.
,
Sitzman
,
B. T.
,
Smuck
,
M.
,
Van Zundert
,
J.
,
Vorenkamp
,
K.
,
Wallace
,
M. S.
, and
Zhao
,
Z.
,
2020
, “
Consensus Practice Guidelines on Interventions for Lumbar Facet Joint Pain From a Multispecialty, International Working Group
,”
Reg. Anesth. Pain Med.
,
45
(
6
), pp.
424
467
.10.1136/rapm-2019-101243
25.
Zarei
,
V.
,
Liu
,
C. J.
,
Claeson
,
A. A.
,
Akkin
,
T.
, and
Barocas
,
V. H.
,
2017
, “
Image-Based Multiscale Mechanical Modeling Shows the Importance of Structural Heterogeneity in the Human Lumbar Facet Capsular Ligament
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1425
1438
.10.1007/s10237-017-0896-4
You do not currently have access to this content.