Abstract

Bioreactors are commonly used to apply biophysically relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis, and they offer great flexibility because key features of the stimuli (e.g., duty cycle, frequency, amplitude, and duration) can be controlled to elicit a desired cellular response. However, most bioreactors that apply mechanical and electrical stimulations do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. To enable such exploration, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop. Herein, we develop and calibrate a bioreactor, based on our previously established modified Flexcell system, to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50%, 0.70%, 0.75%, 1.0%, and 1.5%) and voltages (1.5 and 3.5 V), respectively. Following calibration, applied mechanical and electrical stimulations were not statistically different from their desired target values and were consistent whether delivered independently or in combination. Concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (<2%) and electrical (<1%) values, compared to their independently delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue-engineered constructs as they develop.

References

1.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
570
575
.10.1115/1.1318906
2.
Li
,
K.
,
Zhang
,
C.
,
Qiu
,
L.
,
Gao
,
L.
, and
Zhang
,
X.
,
2017
, “
Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering
,”
Tissue Eng., Part B
,
23
(
4
), pp.
399
411
.10.1089/ten.teb.2016.0427
3.
Salinas
,
E. Y.
,
Hu
,
J. C.
, and
Athanasiou
,
K.
,
2018
, “
A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties
,”
Tissue Eng., Part B
,
24
(
5
), pp.
345
358
.10.1089/ten.teb.2018.0006
4.
Butler
,
D. L.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Shearn
,
J. T.
,
Gooch
,
C.
, and
Awad
,
H.
,
2008
, “
Functional Tissue Engineering for Tendon Repair: A Multidisciplinary Strategy Using Mesenchymal Stem Cells, Bioscaffolds, and Mechanical Stimulation
,”
J. Orthop. Res.
,
26
(
1
), pp.
1
9
.10.1002/jor.20456
5.
Cittadella Vigodarzere
,
G.
, and
Mantero
,
S.
,
2014
, “
Skeletal Muscle Tissue Engineering: Strategies for Volumetric Constructs
,”
Front. Physiol.
,
5
, p.
362
.10.3389/fphys.2014.00362
6.
Darling
,
E. M.
, and
Athanasiou
,
K. A.
,
2003
, “
Articular Cartilage Bioreactors and Bioprocesses
,”
Tissue Eng.
,
9
(
1
), pp.
9
26
.10.1089/107632703762687492
7.
Woo
,
S. L.-Y.
,
Hildebrand
,
K.
,
Watanabe
,
N.
,
Fenwick
,
J.
,
Papageorgiou
,
C. D.
, and
Wang
,
J. H.
,
1999
, “
Tissue Engineering of Ligament and Tendon Healing
,”
Clin. Orthop. Relat. Res.
,
367
(
Suppl
.), pp.
S312
S323
.10.1097/00003086-199910001-00030
8.
Bian
,
W.
, and
Bursac
,
N.
,
2008
, “
Tissue Engineering of Functional Skeletal Muscle: Challenges and Recent Advances
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
5
), pp.
109
113
.10.1109/MEMB.2008.928460
9.
Banes
,
A. J.
,
Gilbert
,
J.
,
Taylor
,
D.
, and
Monbureau
,
O.
,
1985
, “
A New Vacuum-Operated Stress-Providing Instrument That Applies Static or Variable Duration Cyclic Tension or Compression to Cells In Vitro
,”
J. Cell Sci.
,
75
, pp.
35
42
.10.1242/jcs.75.1.35
10.
Zhang
,
L.
,
Hu
,
J.
, and
Athanasiou
,
K. A.
,
2009
, “
The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration
,”
Crit. Rev. Biomed. Eng.
,
37
(
1–2
), pp.
1
57
.10.1615/CritRevBiomedEng.v37.i1-2.10
11.
Bayer
,
M. L.
,
Schjerling
,
P.
,
Herchenhan
,
A.
,
Zeltz
,
C.
,
Heinemeier
,
K. M.
,
Christensen
,
L.
,
Krogsgaard
,
M.
,
Gullberg
,
D.
, and
Kjaer
,
M.
,
2014
, “
Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype
,”
PLoS One
,
9
(
1
), p.
e86078
.10.1371/journal.pone.0086078
12.
Klumpp
,
D.
,
Horch
,
R. E.
,
Ulrich
,
K.
, and
Beier
,
J. P.
,
2010
, “
Engineering Skeletal Muscle Tissue—New Perspectives In Vitro and In Vivo
,”
J. Cell. Mol. Med.
,
14
(
11
), pp.
2622
2629
.10.1111/j.1582-4934.2010.01183.x
13.
Donnelly
,
K.
,
Khodabukus
,
A.
,
Philp
,
A.
,
Deldicque
,
L.
,
Dennis
,
R. G.
, and
Baar
,
K.
,
2010
, “
A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro
,”
Tissue Eng., Part C
,
16
(
4
), pp.
711
718
.10.1089/ten.tec.2009.0125
14.
Tandon
,
N.
,
Cannizzaro
,
C.
,
Chao
,
P.-H. G.
,
Maidhof
,
R.
,
Marsano
,
A.
,
Ting
,
H.
,
Radisic
,
M.
, and
Vunjak-Novakovix
,
G.
,
2009
, “
Electrical Stimulation Systems for Cardiac Tissue Engineering
,”
Nat. Protoc.
,
4
(
2
), pp.
155
173
.10.1038/nprot.2008.183
15.
Leppik
,
L.
,
Zhihua
,
H.
,
Mobini
,
S.
,
Thottakkattumana Parameswaran
,
V.
,
Eischen-Loges
,
M.
,
Slavici
,
A.
,
Helbing
,
J.
,
2018
, “
Combining Electrical Stimulation and Tissue Engineering to Treat Large Bone Defects in a Rat Model
,”
Sci. Rep.
,
8
, p.
6307
.10.1038/s41598-018-24892-0
16.
Khodabukus
,
A.
, and
Baar
,
K.
,
2011
, “
Defined Electrical Stimulation Emphasizing Excitability for the Development and Testing of Engineered Skeletal Muscle
,”
Tissue Eng., Part C
,
18
(
5
), pp.
349
357
.10.1089/ten.tec.2011.0364
17.
Liao
,
I.-C.
,
Liu
,
J. B.
,
Bursac
,
N.
, and
Leong
,
K. W.
,
2008
, “
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers
,”
Cell. Mol. Bioeng.
,
1
(
2–3
), pp.
133
145
.10.1007/s12195-008-0021-y
18.
Williams
,
M. L.
,
Kostrominova
,
T. Y.
,
Arruda
,
E. M.
, and
Larkin
,
L. M.
,
2013
, “
Effect of Implantation on Engineered Skeletal Muscle Constructs
,”
J. Tissue Eng. Regener. Med.
,
7
, pp.
434
442
.10.1002/term.537
19.
Beldjilali-Labro
,
M.
,
Garcia Garcia
,
A.
,
Farhat
,
F.
,
Bedoui
,
F.
,
Grosset
,
J.-F.
,
Dufresne
,
M.
, and
Legallais
,
C.
,
2018
, “
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges
,”
Materials (Basel)
,
11
(
7
), p.
1116
.10.3390/ma11071116
20.
Cole
,
K.
,
Henano
,
N.
,
Miller
,
T.
, and
Pawelski
,
K.
,
2015
, “
Mechanical and Electrical Stimulation Device for the Creation of a Functional Unit of Human Skeletal Muscle In Vitro
,” Worcester Polytechnic Institute, Worcester, MA, Project No. RLP-1401.
21.
Qazi
,
T. H.
,
Mooney
,
D. J.
,
Pumberger
,
M.
,
Geißler
,
S.
, and
Duda
,
G. N.
,
2015
, “
Biomaterials Based Strategies for Skeletal Muscle Tissue Engineering: Existing Technologies and Future Trends
,”
Biomaterials
,
53
, pp.
502
521
.10.1016/j.biomaterials.2015.02.110
22.
Schiele
,
N. R.
,
Koppes
,
R. A.
,
Chrisey
,
D. B.
, and
Corr
,
D. T.
,
2013
, “
Engineering Cellular Fibers for Musculoskeletal Soft Tissues Using Directed Self-Assembly
,”
Tissue Eng., Part A
,
19
(
9–10
), pp.
1223
1232
.10.1089/ten.tea.2012.0321
23.
Mubyana
,
K.
, and
Corr
,
D. T.
,
2018
, “
Cyclic Uniaxial Tensile Strain Enhances the Mechanical Properties of Engineered, Scaffold-Free Tendon Fibers
,”
Tissue Eng., Part A
,
24
(
23–24
), pp.
1808
1817
.10.1089/ten.tea.2018.0028
24.
Koppes
,
R. A.
,
2013
, “
Dynamic Skeletal Muscle Contraction and Tissue Engineering: Using Drosophila Melangastor as a Genetically Manipulable Experimental Model Species to Investigate the Role of Myosin in the Underlying Mechanisms of Force Depression and Force Enhancement, and the Development of a Electromechanical Bioreactor for Tissue Engineering of Single Fiber Mammalian Skeletal Muscle
,” Ph.D. dissertation,
Rensselaer Polytechnic Institute
,
Troy, NY
.
25.
Van Houten
,
S.
,
Bramson
,
M.
, and
Corr
,
D.
,
2020
, “
A Custom Bioreactor for Concurrent Mechanical and Electrical Stimulation of Scaffold-Free Engineered Skeletal Muscle Fibers
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference Virtual
, June 17–20, p.
619
.
26.
Schiele
,
N. R.
,
Costello
,
C. A.
, and
Corr
,
D. T.
,
2011
, “
Characterizing Strain in an Embryonic Development Inspired Method for Engineered Tendon
,”
IEEE 37th Annual Northeast Bioengineering Conference
, Troy, NY, Apr. 1–3, pp.
1
2
.10.1109/NEBC.2011.5778706
27.
Bramson
,
M. T. K.
,
Van Houten
,
S. K.
, and
Corr
,
D. T.
,
2020
, “
Mechanobiology in Soft Tissue Engineering
,”
Mechanobiology: From Molecular Sensing to Disease
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
137
159
.
28.
Sieiro-Mosti
,
D.
,
De La Celle
,
M.
,
Pelé
,
M.
, and
Marcelle
,
C.
,
2014
, “
A Dynamic Analysis of Muscle Fusion in the Chick Embryo
,”
Development
,
141
(
18
), pp.
3605
3611
.10.1242/dev.114546
29.
Bloom
,
J. W.
,
Butler
,
J.
,
Brierly
,
J.
, and
Cosmos
,
E.
,
1985
, “
Direct Electrical Stimulation Promotes Growth and Enhances Survival of Aneurogenic Muscles of the Chick Embryo
,”
J. Neurosci.
,
5
(
2
), pp.
414
420
.10.1523/JNEUROSCI.05-02-00414.1985
30.
Perniconi
,
B.
, and
Coletti
,
D.
,
2014
, “
Skeletal Muscle Tissue Engineering: Best Bet or Black Beast?
,”
Front. Physiol.
,
5
, p.
255
.10.3389/fphys.2014.00255
31.
Kim
,
B. S.
,
Nikolovski
,
J.
,
Bonadio
,
J.
, and
Mooney
,
D. J.
,
1999
, “
Cyclic Mechanical Strain Regulates the Development of Engineered Smooth Muscle Tissue
,”
Nat. Biotechnol.
,
17
(
10
), pp.
979
983
.10.1038/13671
You do not currently have access to this content.