Abstract

The determination of bone mechanical properties remains crucial, especially to feed up numerical models. An original methodology of inverse analysis has been developed to determine the longitudinal elastic modulus of femoral cortical bone. The method is based on a numerical twin of a specific three-point bending test. It has been designed to be reproducible on each test result. In addition, the biofidelity of the geometric acquisition method has been quantified. As the assessment is performed at the scale of a bone shaft segment, the Young's modulus values obtained (between 9518.29 MPa and 14181.15 MPa) are considered average values for the whole tissue, highlighting some intersubject variability. The material microstructure has also been studied through histological analysis, and bone-to-bone comparisons highlighted discrepancies in quadrants microstructures. Furthermore, significant intrasubject variability exists since differences between the bone's medial-lateral and anterior–posterior quadrants have been observed. Thus, the study of microstructures can largely explain the differences between the elastic modulus values obtained. However, a more in-depth study of bone mineral density would also be necessary and would provide some additional information. This study is currently being setup, alongside an investigation of the local variations of the elastic modulus.

References

1.
Behiri
,
J. C.
, and
Bonfield
,
W.
,
1984
, “
Fracture Mechanics of Bone - The Effects of Density, Specimen Thickness and Crack Velocity on Longitudinal Fracture
,”
J. Biomech.
,
17
(
1
), pp.
25
34
.10.1016/0021-9290(84)90076-9
2.
Boruah
,
S.
,
Subit
,
D. L.
,
Paskoff
,
G. R.
,
Shender
,
B. S.
,
Crandall
,
J. R.
, and
Salzar
,
R. S.
,
2017
, “
Influence of Bone Microstructure on the Mechanical Properties of Skull Cortical Bone—A Combined Experimental and Computational Approach
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
688
704
.10.1016/j.jmbbm.2016.09.041
3.
Seedhom
,
B. B.
,
Berry
,
E.
,
Ostell
,
A. E.
, and
Cuppone
,
M.
,
2004
, “
The Longitudinal Young's Modulus of Cortical Bone in the Midshaft of Human Femur and Its Correlation With CT Scanning Data
,”
Calcified Tissue Int.
,
74
(
3
), pp.
302
309
.10.1007/s00223-002-2123-1
4.
Granke
,
M.
,
Makowski
,
A. J.
,
Uppuganti
,
S.
, and
Nyman
,
J. S.
,
2016
, “
Prevalent Role of Porosity and Osteonal Area Over Mineralization Heterogeneity in the Fracture Toughness of Human Cortical Bone
,”
J. Biomech.
,
49
(
13
), pp.
2748
2755
.10.1016/j.jbiomech.2016.06.009
5.
Donaldson
,
F.
,
Ruffoni
,
D.
,
Schneider
,
P.
,
Levchuk
,
A.
,
Zwahlen
,
A.
,
Pankaj
,
P.
, and
Müller
,
R.
,
2014
, “
Modeling Microdamage Behavior of Cortical Bone
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1227
1242
.10.1007/s10237-014-0568-6
6.
Marco
,
M.
,
Giner
,
E.
,
Larraínzar-Garijo
,
R.
,
Caeiro
,
J. R.
, and
Miguélez
,
M. H.
,
2018
, “
Modelling of Femur Fracture Using Finite Element Procedures
,”
Eng. Fract. Mech.
,
196
, pp.
157
167
.10.1016/j.engfracmech.2018.04.024
7.
Alho
,
A.
,
Strømsøe
,
K.
, and
Høiseth
,
A.
,
1995
, “
Pairwise Strength Relationships of Cortical and Cancellous Bone in Human Femur: An Autopsy Study
,”
Arch. Orthop. Trauma Surg.
,
114
(
4
), pp.
211
214
.10.1007/BF00444265
8.
Arias-Moreno
,
A. J.
,
Ito
,
K.
, and
van Rietbergen
,
B.
,
2020
, “
Accuracy of Beam Theory for Estimating Bone Tissue Modulus and Yield Stress From 3-Point Bending Tests on Rat Femora
,”
J. Biomech.
,
101
, p.
109654
.10.1016/j.jbiomech.2020.109654
9.
Ritchie
,
R. O.
,
Koester
,
K. J.
,
Ionova
,
S.
,
Yao
,
W.
,
Lane
,
N. E.
, and
Ager
,
J. W.
,
2008
, “
Measurement of the Toughness of Bone: A Tutorial With Special Reference to Small Animal Studies
,”
Bone
,
43
(
5
), pp.
798
812
.10.1016/j.bone.2008.04.027
10.
Tailhan
,
J.-L.
,
Kurtz
,
T.
,
Godio-Raboutet
,
Y.
,
Rossi
,
P.
, and
Thollon
,
L.
,
2022
, “
Macrocrack Propagation in a Notched Shaft Segment of Human Long Bone: Experimental Results and Mechanical Aspects
,”
J. Mech. Behav. Biomed. Mater.
,
128
, p.
105132
.10.1016/j.jmbbm.2022.105132
11.
Kurtz
,
T.
,
Tailhan
,
J.-L.
, and
Godio-Raboutet
,
Y.
,
2022
, “
Propagation de Fissure Sur Tronçon D'os Long Rainuré
,”
25ème Congrès Français de Mécanique
,
Nantes, France
.
12.
Yeni
,
Y. N.
,
Brown
,
C. U.
,
Wang
,
Z.
, and
Norman
,
T. L.
,
1997
, “
The Influence of Bone Morphology on Fracture Toughness of the Human Femur and Tibia
,”
Bone
,
21
(
5
), pp.
453
459
.10.1016/S8756-3282(97)00173-7
13.
Trębacz
,
H.
,
Zdunek
,
A.
,
Cybulska
,
J.
, and
Pieczywek
,
P.
,
2013
, “
Effects of Fatigue on Microstructure and Mechanical Properties of Bone Organic Matrix Under Compression
,”
Aust. Phys. Eng. Sci. Med.
,
36
(
1
), pp.
43
54
.10.1007/s13246-013-0185-1
14.
Ager
,
J. W.
,
Balooch
,
G.
, and
Ritchie
,
R. O.
,
2006
, “
Fracture, Aging, and Disease in Bone
,”
J. Mater. Res.
,
21
(
8
), pp.
1878
1892
.10.1557/jmr.2006.0242
15.
Martin
,
R. B.
,
Burr
,
D. B.
,
Sharkey
,
N. A.
, and Fyhrie, D. P.,
2015
, “
Fatigue and Fracture Resistance of Bone
,”
Skeletal Tissue Mechanics
,
R. B.
Martin
,
D. B.
Burr
,
N. A.
Sharkey,
and D. P. Fyhrie, eds.,
Springer
, Berlin, pp.
423
482
.
16.
Augat
,
P.
, and
Schorlemmer
,
S.
,
2006
, “
The Role of Cortical Bone and Its Microstructure in Bone Strength
,”
Age Ageing
,
35
(
suppl_2
), pp.
ii27
ii31
.10.1093/ageing/afl081
17.
Ascenzi
,
A.
,
Baschieri
,
P.
, and
Benvenuti
,
A.
,
1990
, “
The Bending Properties of Single Osteons
,”
J. Biomech.
,
23
(
8
), pp.
763
771
.10.1016/0021-9290(90)90023-V
18.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
1998
, “
On the Relationship Between Microstructure of the Cortical Bone and Its Overall Elastic Properties
,”
Int. J. Fract.
,
92
(
1
), pp.
1
8
.10.1023/A:1007593916936
19.
Unger
,
S.
,
Blauth
,
M.
, and
Schmoelz
,
W.
,
2010
, “
Effects of Three Different Preservation Methods on the Mechanical Properties of Human and Bovine Cortical Bone
,”
Bone
,
47
(
6
), pp.
1048
1053
.10.1016/j.bone.2010.08.012
20.
van Haaren
,
E. H.
,
van der Zwaard
,
B. C.
,
van der Veen
,
A. J.
,
Heyligers
,
I. C.
,
Wuisman
,
P. I.
, and
Smit
,
T. H.
,
2008
, “
Effect of Long-Term Preservation on the Mechanical Properties of Cortical Bone in Goats
,”
Acta Orthop.
,
79
(
5
), pp.
708
716
.10.1080/17453670810016759
21.
Linde
,
F.
, and
Sørensen
,
H. C. F.
,
1993
, “
The Effect of Different Storage Methods on the Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
26
(
10
), pp.
1249
1252
.10.1016/0021-9290(93)90072-M
22.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
, et al.,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging Quant. Imaging Cancer
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
23.
Norton
,
M. R.
, and
Gamble
,
C.
,
2001
, “
Bone Classification: An Objective Scale of Bone Density Using the Computerized Tomography Scan
,”
Clin. Oral Implants Res.
,
12
(
1
), pp.
79
84
.10.1034/j.1600-0501.2001.012001079.x
24.
Li
,
C.
,
Jin
,
D.
,
Chen
,
C.
,
Letuchy
,
E. M.
,
Janz
,
K. F.
,
Burns
,
T. L.
,
Torner
,
J. C.
,
Levy
,
S. M.
, and
Saha
,
P. K.
,
2015
, “
Automated Cortical Bone Segmentation for Multirow-Detector CT Imaging With Validation and Application to Human Studies
,”
Med. Phys.
,
42
(
8
), pp.
4553
4565
.10.1118/1.4923753
25.
Palacio-Mancheno
,
P. E.
,
Larriera
,
A. I.
,
Doty
,
S. B.
,
Cardoso
,
L.
, and
Fritton
,
S. P.
,
2014
, “
3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution μCT: Effects of Resolution and Threshold Method
,”
J. Bone Miner. Res.
,
29
(
1
), pp.
142
150
.10.1002/jbmr.2012
26.
Mull
,
R.
,
1984
, “
Mass Estimates by Computed Tomography: Physical Density From CT Numbers
,”
Am. J. Roentgenol.
,
143
(
5
), pp.
1101
1104
.10.2214/ajr.143.5.1101
27.
Dong
,
X. N.
, and
Guo
,
X. E.
,
2004
, “
The Dependence of Transversely Isotropic Elasticity of Human Femoral Cortical Bone on Porosity
,”
J. Biomech.
,
37
(
8
), pp.
1281
1287
.10.1016/j.jbiomech.2003.12.011
28.
McElhaney
,
J. H.
,
Fogle
,
J. L.
,
Melvin
,
J. W.
,
Haynes
,
R. R.
,
Roberts
,
V. L.
, and
Alem
,
N. M.
,
1970
, “
Mechanical Properties of Cranial Bone
,”
J. Biomech.
,
3
(
5
), pp.
495
511
.10.1016/0021-9290(70)90059-X
29.
Kohles
,
S. S.
, and
Roberts
,
J. B.
,
2002
, “
Linear Poroelastic Cancellous Bone Anisotropy: Trabecular Solid Elastic and Fluid Transport Properties
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
521
526
.10.1115/1.1503374
30.
Schaffler
,
M. B.
, and
Burr
,
D. B.
,
1988
, “
Stiffness of Compact Bone: Effects of Porosity and Density
,”
J. Biomech.
,
21
(
1
), pp.
13
16
.10.1016/0021-9290(88)90186-8
31.
Martin
,
R. B.
,
1991
, “
Determinants of the Mechanical Properties of Bones
,”
J. Biomech.
,
24
, pp.
79
88
.10.1016/0021-9290(91)90379-2
32.
McNeel
,
R.
,
2010
, “
Rhinoceros 3D, Version 6.0
,”
Robert McNeel & Associates
,
Seattle, WA
.
33.
Silva
,
A. B. C.
,
Laszczyk
,
J.
,
Wrobel
,
L. C.
,
Ribeiro
,
F. L.
, and
Nowak
,
A. J.
,
2016
, “
A Thermoregulation Model for Hypothermic Treatment of Neonates
,”
Med. Eng. Phys.
,
38
(
9
), pp.
988
998
.10.1016/j.medengphy.2016.06.018
34.
Silva
,
A. B. C. G.
,
Wrobel
,
L. C.
, and
Ribeiro
,
F. L. B.
,
2018
, “
A Thermoregulation Model for Whole Body Cooling Hypothermia
,”
J. Therm. Biol.
,
78
, pp.
122
130
.10.1016/j.jtherbio.2018.08.019
35.
Ribeiro
,
F. L. B.
, and
Coutinho
,
A. L. G. A.
,
2005
, “
Comparison Between Element, Edge and Compressed Storage Schemes for Iterative Solutions in Finite Element Analyses
,”
Int. J. Numer. Methods Eng.
,
63
(
4
), pp.
569
588
.10.1002/nme.1290
36.
Ribeiro
,
F. L. B.
, and
Ferreira
,
I. A.
,
2007
, “
Parallel Implementation of the Finite Element Method Using Compressed Data Structures
,”
Comput. Mech.
,
41
(
1
), pp.
31
48
.10.1007/s00466-007-0166-x
37.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
, et al.,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.10.1038/nmeth.2019
38.
R Core Team,
2021
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing,
Vienna, Austria
, accessed Aug. 11, 2023, https://www.R-project.org/
39.
Currey
,
J. D.
,
1988
, “
The Effect of Porosity and Mineral Content on the Young's Modulus of Elasticity of Compact Bone
,”
J. Biomech.
,
21
(
2
), pp.
131
139
.10.1016/0021-9290(88)90006-1
40.
Haire
,
T. J.
,
Hodgskinson
,
R.
,
Ganney
,
P. S.
, and
Langton
,
C. M.
,
1998
, “
A Comparison of Porosity, Fabric and Fractal Dimension as Predictors of the Young's Modulus of Equine Cancellous Bone
,”
Med. Eng. Phys.
,
20
(
8
), pp.
588
593
.10.1016/S1350-4533(98)00063-0
41.
Bruce Martin
,
R.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, eds.,
1998
,
Skeletal Tissue Mechanics
,
Springer
, Berlin.
42.
Katz
,
J. L.
, and
Yoon
,
H. S.
,
1984
, “
The Structure and Anisotropic Mechanical Properties of Bone
,”
IEEE Trans. Biomed. Eng.
,
BME-31
(
12
), pp.
878
884
.10.1109/TBME.1984.325252
43.
Rho
,
J.-Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.10.1016/S1350-4533(98)00007-1
44.
Zioupos
,
P.
, and
Currey
,
J. D.
,
1998
, “
Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone With Age
,”
Bone
,
22
(
1
), pp.
57
66
.10.1016/S8756-3282(97)00228-7
45.
Sözen
,
T.
,
Özisik
,
L.
, and
Basran
,
N. Ç.
,
2017
, “
An Overview and Management of Osteoporosis
,”
Eur. J. Rheumatol.
,
4
(
1
), pp.
46
56
.10.5152/eurjrheum.2016.048
46.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
,
1984
, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
,
17
(
5
), pp.
349
361
.10.1016/0021-9290(84)90029-0
47.
Bjørnerem
,
Å.
,
2016
, “
The Clinical Contribution of Cortical Porosity to Fragility Fractures
,”
BoneKey Rep.
,
5
(1–5), p.
846
.10.1038/bonekey.2016.77
48.
Zhou
,
J.
,
Cui
,
Z.
, and
Sevostianov
,
I.
,
2020
, “
Effect of Saturation on the Elastic Properties and Anisotropy of Cortical Bone
,”
Int. J. Eng. Sci.
,
155
, p.
103362
.10.1016/j.ijengsci.2020.103362
49.
Öhman
,
C.
,
Dall'Ara
,
E.
,
Baleani
,
M.
,
Jan
,
S. V. S.
, and
Viceconti
,
M.
,
2008
, “
The Effects of Embalming Using a 4% Formalin Solution on the Compressive Mechanical Properties of Human Cortical Bone
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
10
), pp.
1294
1298
.10.1016/j.clinbiomech.2008.07.007
50.
Wachter
,
N. J.
,
Krischak
,
G. D.
,
Mentzel
,
M.
,
Sarkar
,
M. R.
,
Ebinger
,
T.
,
Kinzl
,
L.
,
Claes
,
L.
, and
Augat
,
P.
,
2002
, “
Correlation of Bone Mineral Density With Strength and Microstructural Parameters of Cortical Bone In Vitro
,”
Bone
,
31
(
1
), pp.
90
95
.10.1016/S8756-3282(02)00779-2
You do not currently have access to this content.