Abstract

Side and frontal airbag deployment represents the main injury mechanism to the upper extremity during automotive collisions. Previous dynamic injury limit research has been limited to testing the forearm at either the assumed most vulnerable location to fracture, the distal 1/3rd, or the midpoint. Studies have varied the surface to which impacts were applied, with no clear consensus on the site of greatest vulnerability. The unpredictability of airbag impact location, especially with altered hand positioning, limits the effectiveness of existing forearm injury limits determined from impacts at only one location. The current study quantified the effect of impacts at alternative locations on injury risk along the forearm using the THUMS FE model. Airbag-level impacts were simulated along the forearm on all four anatomical surfaces. Results showed the distal 1/3rd is not the most vulnerable location (for any side), indicating forearm fracture is not solely driven by area moment of inertia (as previously assumed). The posterior forearm was the weakest, suggesting that current test standards underestimate the fracture risk of the forearm. Linear regression models showed strong correlation between forearm fracture risk and bone geometry (cross-sectional area and area moment of inertia) as well as soft-tissue depth, potentially providing the ability to predict forearm injury tolerances for any location or forearm size. This study demonstrated the forearm's vulnerability to fracture from airbag deployments, indicating the need for safety systems to better address injury mechanisms for the upper limb to effectively protect drivers.

References

1.
Transport Canada
,
2022
, “
Canadian Motor Vehicle Traffic Collision Statistics: 2020
,” Transport Canada, accessed July 19, 2023, https://tc.canada.ca/en/road-transportation/statistics-data/canadian-motor-vehicle-traffic-collision-statistics-2020.
2.
Forman
,
J.
,
Poplin
,
G. S.
,
Shaw
,
C. G.
,
McMurry
,
T. L.
,
Schmidt
,
K.
,
Ash
,
J.
, and
Sunnevang
,
C.
,
2019
, “
Automobile Injury Trends in the Contemporary Fleet: Belted Occupants in Frontal Collisions
,”
Traffic Injury Prev.
,
20
(
6
), pp.
607
612
.10.1080/15389588.2019.1630825
3.
Werner
,
J. V.
,
Roberson
,
S. F.
,
Ferguson
,
S. A.
, and
Digges
,
K. H.
,
1996
, “
Air Bag Deployment Frequency and Injury Risks
,” SAE Paper No. 960664.10.4271/960664
4.
Wraighte
,
P. J.
,
Manning
,
P. A.
,
Wallace
,
W. A.
, and
Hynd
,
D.
,
2011
, “
Upper Extremity Injuries in Road Traffic Accidents
,”
Shoulder Elbow
,
3
(
3
), pp.
184
187
.10.1111/j.1758-5740.2011.00107.x
5.
Hault-Dubrulle
,
A.
,
Robache
,
F.
,
Delille
,
R.
,
Lesueur
,
D.
,
Drazetic
,
P.
,
Morvan
,
H.
,
Wavreille
,
G.
,
Demondion
,
X.
, and
Fontaine
,
C.
,
2012
, “
Influence of Pre-Crash Driver Posture on Injury Outcome: Airbag Interaction With Human Upper Extremities
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
sup1
), pp.
295
297
.10.1080/10255842.2012.713635
6.
Ootes
,
D.
,
Lambers
,
K. T.
, and
Ring
,
D. C.
,
2011
, “
The Epidemiology of Upper Extremity Injuries Presenting to the Emergency Department in the United States
,”
HAND
,
7
(
1
), pp.
18
22
.10.1007/s11552-011-9383-z
7.
Dalmotas
,
D. J.
,
German
,
A.
,
Hendrick
,
B. E.
, and
Hurley
,
R. M.
,
1995
, “
Airbag Deployments
,”
J. Trauma: Injury, Infection, Crit. Care
,
38
(
4
), pp.
476
481
.10.1097/00005373-199504000-00002
8.
Huelke
,
D. F.
,
Moore
,
J. L.
,
Compton
,
T. W.
,
Samuels
,
J.
, and
Levine
,
R. S.
,
1995
, “
Upper Extremity Injuries Related to Airbag Deployments
,”
J. Trauma: Injury, Infection, Crit. Care
,
38
(
4
), pp.
482
488
.10.1097/00005373-199504000-00003
9.
Bass
,
C. R.
,
Duma
,
S. M.
,
Crandall
,
J. R.
,
Morris
,
R.
,
Martin
,
P.
,
Pilkey
,
W. D.
,
Hurwitz
,
S.
,
Khaewpong
,
N.
,
Eppinger
,
R.
, and
Sun
,
E.
,
1997
, “
The Interaction of Air Bags With Upper Extremities
,” SAE Paper No. 973324.10.4271/973324
10.
Hardy
,
W. N.
,
Schneider
,
L. W.
, and
Rouhana
,
S. W.
,
2001
, “
Prediction of Airbag-Induced Forearm Fractures and Airbag Aggressivity
,” SAE Paper No. 2001-22-0024.10.4271/2001-22-0024
11.
Duma
,
S. M.
,
Crandall
,
J. R.
,
Hurwitz
,
S. R.
, and
Pilkey
,
W. D.
,
2000
, “
Small Female Upper Extremity Interaction With a Deploying Side Air Bag
,”
J. Crash Prev. Injury Control
,
2
(
1
), pp.
45
61
.10.1080/10286580008902552
12.
Bass
,
C. R.
,
Duma
,
S.
,
Crandall
,
J.
,
George
,
S.
,
Kuppa
,
S.
,
Khaewpong
,
N.
,
Sun
,
E.
, and
Eppinger
,
R.
,
2002
, “
Comparison of Upper Extremity Test Devices for the Evaluation of Frontal Air Bags
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
10
), pp.
795
803
.10.1177/095440700221600102
13.
Jonsson
,
B.
,
2011
, “
Hand Position on Steering Wheel During Driving
,”
Traffic Injury Prev.
,
12
(
2
), pp.
187
190
.10.1080/15389588.2010.533722
14.
Hsu
,
E. S.
,
Patwardhan
,
A. G.
,
Meade
,
K. P.
,
Light
,
T. R.
, and
Martin
,
W. R.
,
1993
, “
Cross-Sectional Geometrical Properties and Bone Mineral Contents of the Human Radius and Ulna
,”
J. Biomech.
,
26
(
11
), pp.
1307
1318
.10.1016/0021-9290(93)90354-H
15.
Duma
,
S. M.
,
Schreiber
,
P. H.
,
McMaster
,
J. D.
,
Crandall
,
J. R.
, and
Bass
,
C. R.
,
2002
, “
Fracture Tolerance of the Male Forearm: The Effect of Pronation Versus Supination
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
8
), pp.
649
654
.10.1177/095440700221600803
16.
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2002
, “
Dynamic Bending Tolerance of the Human Forearm
,”
Traffic Injury Prev.
,
3
(
1
), pp.
43
48
.10.1080/15389580210520
17.
Begeman
,
P. C.
, and
Pratima
,
K.
,
1999
, “
Bending Strength of the Human Cadaveric Forearm Due to Lateral Loads
,” SAE Paper No. 99SC24.10.4271/99SC24
18.
Haug
,
E.
,
Choi
,
H.-Y.
,
Robin
,
S.
, and
Beaugonin
,
M.
,
2004
, “
Human Models for Crash and Impact Simulation
,”
Handbook of Numerical Analysis
, North-Holland Publishing Co., Amsterdam, The Netherlands, pp.
231
452
.
19.
Ruan
,
J.
,
El-Jawahri
,
R.
,
Chai
,
L.
,
Barbat
,
S.
, and
Prasad
,
P.
,
2003
, “
Prediction and Analysis of Human Thoracic Impact Responses and Injuries in Cadaver Impacts Using a Full Human Body Finite Element Model
,” SAE Paper No. 2003-22-0014.10.4271/2003-22-0014
20.
Kim
,
Y. S.
,
Choi
,
H. H.
,
Cho
,
Y. N.
,
Park
,
Y. J.
,
Lee
,
J. B.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2005
, “
Numerical Investigations of Interactions Between the Knee-Thigh-Hip Complex With Vehicle Interior Structures
,” SAE Paper No. 2005-22-0005.10.4271/2005-22-0005
21.
Serre
,
T.
,
Brunet
,
C.
,
Bruyere
,
K.
,
Verriest
,
J. P.
,
Mitton
,
D.
,
Bertrand
,
S.
, and
Skalli
,
W.
,
2006
, “
HUMOS (Human Model for Safety) Geometry: From One Specimen to the 5th and 95th Percentile
,” SAE Paper No. 2006-01-2324.10.4271/2006-01-2324
22.
Watanabe
,
R.
,
Katsuhara
,
T.
,
Miyazaki
,
H.
,
Kitagawa
,
Y.
, and
Yasuki
,
T.
,
2012
, “
Research of the Relationship of Pedestrian Injury to Collision Speed, Car-Type, Impact Location and Pedestrian Sizes Using Human FE Model (Thums Version 4)
,” SAE Paper No. 2012-22-0007.10.4271/2012-22-0007
23.
Gayzik
,
F. S.
,
Hamilton
,
C. A.
,
Tan
,
J. C.
,
McNally
,
C.
,
Duma
,
S. M.
,
Klinich
,
K. D.
, and
Stitzel
,
J. D.
,
2009
, “
A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development
,” SAE Paper No. 2009-01-2261.10.4271/2009-01-2261
24.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2018
, “
Development of Human-Body Model THUMS Version 6 Containing Muscle Controllers and Application to Injury Analysis in Frontal Collision After Brake Deceleration
,”
IRCOBI Conference
, Athens, Greece, Sept. 12–14, pp.
207
223
.https://www.ircobi.org/wordpress/downloads/irc18/pdf-files/32.pdf
25.
Quenneville
,
C. E.
, and
Dunning
,
C. E.
,
2011
, “
Development of a Finite Element Model of the Tibia for Short-Duration High-Force Axial Impact Loading
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
205
212
.10.1080/10255842.2010.548324
26.
Burkhart
,
T. A.
,
Quenneville
,
C. E.
,
Dunning
,
C. E.
, and
Andrew
,
D. M.
,
2014
, “
Development and Validation of a Distal Radius Finite Element Model to Simulate Impact Loading Indicative of a Forward Fall
,”
Proc. IMechE Part H
,
228
(
3
), pp.
258
271
.10.1177/0954411914522781
27.
Duma
,
S. M.
,
Schreiber
,
P. H.
,
McMaster
,
J. D.
,
Crandall
,
J. R.
,
Bass
,
C. R.
, and
Pilkey
,
W. D.
,
1999
, “
Dynamic Injury Tolerances for Long Bones of the Female Upper Extremity
,”
J. Anatomy
,
194
(
3
), pp.
463
471
.10.1046/j.1469-7580.1999.19430463.x
28.
Yamada
,
H.
, and
Evans
,
F. G.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore
.
29.
Martinez
,
A. A.
,
Chakravarty
,
A. B.
, and
Quenneville
,
C. E.
,
2018
, “
The Effect of Impact Duration on the Axial Fracture Tolerance of the Isolated Tibia During Automotive and Military Impacts
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
315
320
.10.1016/j.jmbbm.2017.11.013
30.
de Lange
,
J. E.
,
Burrows
,
L. J.
, and
Quenneville
,
C. E.
,
2024
, “
Injury Risk for the Hand and Forearm Under Loading Representative of Behind Shield Blunt Trauma
,”
Ann Biomed Eng.
, 52(3), pp.
707
718
.10.1007/s10439-023-03418-4
You do not currently have access to this content.