Graphical Abstract Figure

Upper-limb force polytopes without (green) and with shoulder dislocation and compression limits constraints (violet).

Graphical Abstract Figure

Upper-limb force polytopes without (green) and with shoulder dislocation and compression limits constraints (violet).

Close modal

Abstract

The aim of this work is to improve musculoskeletal-based models of the upper-limb wrench feasible set (WFS), i.e., the set of achievable maximal wrenches at the hand for applications in collaborative robotics and computer aided ergonomics. In particular, a recent method performing wrench capacity evaluation called the iterative convex hull method (ICHM) is upgraded in order to integrate nondislocation and compression limitation constraints at the glenohumeral (GH) joint not taken into account in the available models. Their effects on the amplitude of the force capacities at the hand, glenohumeral joint reaction forces and upper-limb muscles coordination in comparison to the original iterative convex hull method are investigated in silico. The results highlight the glenohumeral potential dislocation for the majority of elements of the wrench feasible set with the original iterative convex hull method and the fact that the modifications satisfy correctly stability constraints at the glenohumeral joint. Also, the induced muscles coordination pattern favors the action of stabilizing muscles, in particular the rotator-cuff muscles, and lowers that of known potential destabilizing ones according to the literature.

References

1.
Carmichael
,
M.
, and
Liu
,
D.
,
2013
, “
Estimating Physical Assistance Need Using a Musculoskeletal Model
,”
IEEE Trans. Biomed. Eng.
,
60
(
7
), pp.
1912
1919
.10.1109/TBME.2013.2244889
2.
Figueredo
,
L. F. C.
,
Aguiar
,
R. C.
,
Chen
,
L.
,
Chakrabarty
,
S.
,
Dogar
,
M. R.
, and
Cohn
,
A. G.
,
2021
, “
Human Comfortability: Integrating Ergonomics and Muscular-Informed Metrics for Manipulability Analysis During Human-Robot Collaboration
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
351
358
.10.1109/LRA.2020.3043173
3.
Pehlivan
,
A. U.
,
Losey
,
D. P.
, and
O'Malley
,
M. K.
,
2016
, “
Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
113
124
.10.1109/TRO.2015.2503726
4.
Perdeaux
,
K. M.
,
Fischer
,
S. L.
, and
Dickerson
,
C. R.
,
2010
, “
Investigating the Role of the Shoulder Musculature During Maximum Unilateral Isometric Exertions
,”
Occup. Ergon.
,
9
(
3–4
), pp.
141
151
.10.3233/OER-2010-0185
5.
Chaffin
,
D. B.
,
Andersson
,
G. B.
, and
Martin
,
B. J.
,
2006
,
Occupational Biomechanics
,
John Wiley & Sons
, Hoboken, NJ.
6.
Maurice
,
P.
,
Padois
,
V.
,
Measson
,
Y.
, and
Bidaud
,
P.
,
2017
, “
Human-Oriented Design of Collaborative Robots
,”
Int. J. Ind. Ergon.
,
57
, pp.
88
102
.10.1016/j.ergon.2016.11.011
7.
Maurice
,
P.
,
Padois
,
V.
,
Measson
,
Y.
, and
Bidaud
,
P.
,
2016
, “
Experimental Assessment of the Quality of Ergonomic Indicators for Dynamic Systems Computed Using a Digital Human Model
,”
Int. J. Human Factors Modell. Simul.
,
5
(
3
), pp.
190
209
.10.1504/IJHFMS.2016.079705
8.
Ma
,
L.
,
Chablat
,
D.
,
Bennis
,
F.
,
Zhang
,
W.
, and
Guillaume
,
F.
,
2010
, “
A New Muscle Fatigue and Recovery Model and Its Ergonomics Application in Human Simulation
,”
Virtual Phys. Prototyping
,
5
(
3
), pp.
123
137
.10.1080/17452759.2010.504056
9.
Savin
,
J.
,
Gilles
,
M.
,
Gaudez
,
C.
,
Padois
,
V.
, and
Bidaud
,
P.
,
2017
, “
Movement Variability and Digital Human Models: Development of a Demonstrator Taking the Effects of Muscular Fatigue Into Account
,”
Advances in Applied Digital Human Modeling and Simulation
,
V. G.
Duffy
, ed.,
Springer International Publishing
, Cham, Switzerland, pp.
169
179
.
10.
Savin
,
J.
,
Gaudez
,
C.
,
Gilles
,
M.
,
Padois
,
V.
, and
Bidaud
,
P.
,
2021
, “
Evidence of Movement Variability Patterns During a Repetitive Pointing Task Until Exhaustion
,”
Appl. Ergon.
,
96
, p.
103464
.10.1016/j.apergo.2021.103464
11.
Khalaf
,
K. A.
, and
Parnianpour
,
M.
,
2001
, “
A Normative Database of Isokinetic Upper-Extremity Joint Strengths: Towards the Evaluation of Dynamic Human Performance
,”
Biomed. Eng.: Appl., Basis Commun.
,
13
(
2
), pp.
79
92
.10.4015/S101623720100011X
12.
Guenzkofer
,
F.
,
Bubb
,
H.
, and
Bengler
,
K.
,
2012
, “
Elbow Torque Ellipses: Investigation of the Mutual Influences of Rotation, Flexion, and Extension Torques
,”
Work
,
41
(
Suppl 1
), pp.
2260
2267
.10.3233/WOR-2012-0449-2260
13.
Lannersten
,
L.
,
Harms-Ringdahl
,
K.
,
Schüldt
,
K.
,
Ekholm
,
J.
, and
Stockholm MUSIC 1 Study Group
,
1993
, “
Isometric Strength in Flexors, Abductors, and External Rotators of the Shoulder
,”
Clinical Biomech.
,
8
(
5
), pp.
235
242
.10.1016/0268-0033(93)90031-C
14.
Hall
,
A. D.
,
La Delfa
,
N. J.
,
Loma
,
C.
, and
Potvin
,
J. R.
,
2021
, “
A Comparison Between Measured Female Linear Arm Strengths and Estimates From the 3D Static Strength Prediction Program (3DSSPP)
,”
Appl. Ergon.
,
94
, p.
103415
.10.1016/j.apergo.2021.103415
15.
Kotte
,
S. H.
,
Viveen
,
J.
,
Koenraadt
,
K. L.
,
The
,
B.
, and
Eygendaal
,
D.
,
2018
, “
Normative Values of Isometric Elbow Strength in Healthy Adults: A Systematic Review
,”
Shoulder Elbow
,
10
(
3
), pp.
207
215
.10.1177/1758573217748643
16.
La Delfa
,
N. J.
, and
Potvin
,
J. R.
,
2017
, “
The ‘Arm Force Field’ Method to Predict Manual Arm Strength Based on Only Hand Location and Force Direction
,”
Appl. Ergon.
,
59
, pp.
410
421
.10.1016/j.apergo.2016.09.012
17.
Askew
,
L. J.
,
An
,
K.-N.
,
Morrey
,
B. F.
, and
Chao
,
E.
,
1987
, “
Isometric Elbow Strength in Normal Individuals
,”
Clin. Orthop. Relat. Res.
,
222
, pp.
261
266
.10.1097/00003086-198709000-00035
18.
Mital
,
A.
, and
Kumar
,
S.
,
1998
, “
Human Muscle Strength Definitions, Measurement, and Usage: Part i–Guidelines for the Practitioner
,”
Int. J. Ind. Ergon.
,
22
(
1–2
), pp.
101
121
.10.1016/S0169-8141(97)00070-X
19.
Mital
,
A.
, and
Kumar
,
S.
,
1998
, “
Human Muscle Strength Definitions, Measurement, and Usage: Part ii-the Scientific Basis (Knowledge Base) for the Guide
,”
Int. J. Ind. Ergon.
,
22
(
1–2
), pp.
123
144
.10.1016/S0169-8141(97)00071-1
20.
Guenzkofer
,
F.
,
Bubb
,
H.
, and
Bengler
,
K.
,
2012
, “
Maximum Elbow Joint Torques for Digital Human Models
,”
Int. J. Human Factors Modell. Simul.
,
3
(
2
), pp.
109
132
.10.1504/IJHFMS.2012.051092
21.
Skuric
,
A.
,
Padois
,
V.
,
Rezzoug
,
N.
, and
Daney
,
D.
,
2022
, “
On-Line Feasible Wrench Polytope Evaluation Based on Human Musculoskeletal Models: An Iterative Convex Hull Method
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5206
5213
.10.1109/LRA.2022.3155374
22.
Valero-Cuevas
,
F. J.
,
2009
,
A Mathematical Approach to the Mechanical Capabilities of Limbs and Fingers
,
Springer US
,
Boston, MA
, pp.
619
633
.
23.
Ingram
,
D.
,
Engelhardt
,
C.
,
Farron
,
A.
,
Terrier
,
A.
, and
Müllhaupt
,
P.
,
2016
, “
Improving Anterior Deltoid Activity in a Musculoskeletal Shoulder Model – An Analysis of the Torque-Feasible Space at the Sternoclavicular Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
450
463
.10.1080/10255842.2015.1042465
24.
Sutjipto
,
S.
,
Carmichael
,
M. G.
, and
Paul
,
G.
,
2024
, “
Comparison of Strength Profile Representations Using Musculoskeletal Models and Their Applications in Robotics
,”
Front. Rob. AI
,
10
, p.
1265635
.10.3389/frobt.2023.1265635
25.
Aldini
,
S.
,
Lai
,
Y.
,
Carmichael
,
M. G.
,
Paul
,
G.
, and
Liu
,
D.
,
2021
, “
Real-Time Estimation of the Strength Capacity of the Upper Limb for Physical Human-Robot Collaboration
,”
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
,
2021
, pp.
4533
4536
.10.1109/EMBC46164.2021.9630230
26.
Rezzoug
,
N.
,
Hernandez
,
V.
, and
Gorce
,
P.
,
2021
, “
Upper-Limb Isometric Force Feasible Set: Evaluation of Joint Torque-Based Models
,”
Biomechanics
,
1
(
1
), pp.
102
117
.10.3390/biomechanics1010008
27.
Hernandez
,
V.
,
Rezzoug
,
N.
, and
Gorce
,
P.
,
2015
, “
Toward Isometric Force Capabilities Evaluation by Using a Musculoskeletal Model: Comparison With Direct Force Measurement
,”
J. Biomech.
,
48
(
12
), pp.
3178
3184
.10.1016/j.jbiomech.2015.07.003
28.
Blache
,
Y.
,
Begon
,
M.
,
Michaud
,
B.
,
Desmoulins
,
L.
,
Allard
,
P.
, and
Dal Maso
,
F.
,
2017
, “
Muscle Function in Glenohumeral Joint Stability During Lifting Task
,”
Plos One
,
12
(
12
), p.
e0189406
.10.1371/journal.pone.0189406
29.
Blache
,
Y.
,
Creveaux
,
T.
,
Dumas
,
R.
,
Chèze
,
L.
, and
Rogowski
,
I.
,
2017
, “
Glenohumeral Contact Force During Flat and Topspin Tennis Forehand Drives
,”
Sports Biomech.
,
16
(
1
), pp.
127
142
.10.1080/14763141.2016.1216585
30.
Assila
,
N.
,
Duprey
,
S.
, and
Begon
,
M.
,
2021
, “
Glenohumeral Joint and Muscles Functions During a Lifting Task
,”
J. Biomech.
,
126
, p.
110641
.10.1016/j.jbiomech.2021.110641
31.
Lippitt
,
S. B.
,
Vanderhooft
,
J. E.
,
Harris
,
S. L.
,
Sidles
,
J. A.
,
Harryman
,
D. T.
, and
Matsen
,
F. A.
,
1993
, “
Glenohumeral Stability From Concavity-Compression: A Quantitative Analysis
,”
J. Shoulder Elbow Surg.
,
2
(
1
), pp.
27
35
.10.1016/S1058-2746(09)80134-1
32.
Dickerson
,
C.
,
Hughes
,
R.
, and
Chaffin
,
D.
,
2008
, “
Experimental Evaluation of a Computational Shoulder Musculoskeletal Model
,”
Clin. Biomech.
,
23
(
7
), pp.
886
894
.10.1016/j.clinbiomech.2008.04.004
33.
Labriola
,
J. E.
,
Lee
,
T. Q.
,
Debski
,
R. E.
, and
McMahon
,
P. J.
,
2005
, “
Stability and Instability of the Glenohumeral Joint: The Role of Shoulder Muscles
,”
J. Shoulder Elbow Surg.
,
14
(
1
), pp.
S32
S38
.10.1016/j.jse.2004.09.014
34.
Sinha
,
A.
,
Higginson
,
D.
, and
Vickers
,
A.
,
1999
, “
Use of Botulinum a Toxin in Irreducible Shoulder Dislocation Caused by Spasm of Pectoralis Major
,”
J. Shoulder Elbow Surg.
,
8
(
1
), pp.
75
76
.10.1016/S1058-2746(99)90059-9
35.
McFarland
,
D. C.
,
McCain
,
E. M.
,
Poppo
,
M. N.
, and
Saul
,
K. R.
,
2019
, “
Spatial Dependency of Glenohumeral Joint Stability During Dynamic Unimanual and Bimanual Pushing and Pulling
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051006
.10.1115/1.4043035
36.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Williams
,
J. L.
, and
Iannotti
,
J. P.
,
1996
, “
Kinematics of the Glenohumeral Joint: Influences of Muscle Forces, Ligamentous Constraints, and Articular Geometry
,”
J. Orthop. Res.
,
14
(
6
), pp.
986
993
.10.1002/jor.1100140620
37.
Belli
,
I.
,
Joshi
,
S.
,
Prendergast
,
J. M.
,
Beck
,
I.
,
Santina
,
C. D.
,
Peternel
,
L.
, and
Seth
,
A.
,
2023
, “
Does Enforcing Glenohumeral Joint Stability Matter? a New Rapid Muscle Redundancy Solver Highlights the Importance of Non-Superficial Shoulder Muscles
,”
PLos One
, 18(11), p. e0295003.10.1371/journal.pone.0295003
38.
Assila
,
N.
,
Pizzolato
,
C.
,
Martinez
,
R.
,
Lloyd
,
D. G.
, and
Begon
,
M.
,
2020
, “
EMG-Assisted Algorithm to Account for Shoulder Muscles co-Contraction in Overhead Manual Handling
,”
Appl. Sci.
,
10
(
10
), p.
3522
.10.3390/app10103522
39.
Skuric
,
A.
,
Padois
,
V.
, and
Daney
,
D.
,
2023
, “
Pycapacity: A Real-Time Task-Space Capacity Calculation Package for Robotics and Biomechanics
,”
J. Open Source Software
,
8
(
89
), p.
5670
.10.21105/joss.05670
40.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2015
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
13
), pp.
1445
1458
.10.1080/10255842.2014.916698
41.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
, et al.,
2018
, “
Opensim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
42.
Anglin
,
C.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
,
2000
, “
Glenohumeral Contact Forces
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
6
), pp.
637
644
.10.1243/0954411001535660
43.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kääb
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces–Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.10.1016/j.jbiomech.2006.10.037
44.
Klemt
,
C.
,
Prinold
,
J. A.
,
Morgans
,
S.
,
Smith
,
S. H.
,
Nolte
,
D.
,
Reilly
,
P.
, and
Bull
,
A. M.
,
2018
, “
Analysis of Shoulder Compressive and Shear Forces During Functional Activities of Daily Life
,”
Clin. Biomech.
,
54
, pp.
34
41
.10.1016/j.clinbiomech.2018.03.006
45.
Nikooyan
,
A.
,
Veeger
,
H.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
van der Helm
,
F.
,
2010
, “
Validation of the Delft Shoulder and Elbow Model Using in-Vivo Glenohumeral Joint Contact Forces
,”
J. Biomech.
,
43
(
15
), pp.
3007
3014
.10.1016/j.jbiomech.2010.06.015
46.
McMahon
,
P. J.
,
Chow
,
S.
,
Sciaroni
,
L.
,
Yang
,
B. Y.
, and
Lee
,
T. Q.
,
2003
, “
A Novel Cadaveric Model for Anterior-Inferior Shoulder Dislocation Using Forcible Apprehension Positioning
,”
J. Rehabil. Res. Dev.
,
40
(
4
), pp.
349
359
.10.1682/JRRD.2003.07.0349
47.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Halder
,
A.
,
Beier
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living
,”
J. Biomech.
,
42
(
12
), pp.
1840
1849
.10.1016/j.jbiomech.2009.05.035
48.
McMahon
,
P. J.
, and
Lee
,
T. Q.
,
2002
, “
Muscles May Contribute to Shoulder Dislocation and Stability
,”
Clin. Orthop. Relat. Res.
,
403
(
403 Suppl
), pp.
S18
S25
.10.1097/00003086-200210001-00003
49.
Tuszynski
,
J.
,
2024
, “
Triangle/Ray Intersection
,” MATLAB Central File Exchange, accessed Dec. 20, 2024, https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection
50.
Swanson
,
L. B.
, and
LaPier
,
T. K.
,
2014
, “
Upper Extremity Forces Generated During Activities of Daily Living: Implications for Patients Following Sternotomy
,”
J. Acute Care Phys. Ther.
,
5
(
2
), pp.
70
76
.10.1097/01.JAT.0000453141.39418.fb
51.
Yanagawa
,
T.
,
Goodwin
,
C. J.
,
Shelburne
,
K. B.
,
Giphart
,
J. E.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2008
, “
Contributions of the Individual Muscles of the Shoulder to Glenohumeral Joint Stability During Abduction
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021024
.10.1115/1.2903422
52.
Skuric
,
A.
,
Rezzoug
,
N.
,
Padois
,
V.
, and
Daney
,
D.
,
2023
, “
Dynamics Aware Cartesian Wrench Polytope Estimation Based on Human Musculoskeletal Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
26
(
sup1
), pp.
S210
S212
.https://inria.hal.science/hal-04190087/
You do not currently have access to this content.