Abstract

Total talar replacement (TTR) with an additively manufactured personalized total talar prosthesis (TTP) is an emerging treatment for ankle disorders. However, how to enhance the ankle stability after TTR, which usually raises the ankle instability, has not been explored. This study constructed a set of specific numerical models to investigate the effects of TTR and oversized TTPs on the ankle stability, including inversion, eversion, and anterior stability. The oversized TTPs include TTP-FP1.5 and TTP-FP3 scaled the identical TTP0 by 1.5% and 3.0% along the frontal axis, and TTP-VP1.5 and TTP-VP3 scaled TTP0 by 1.5% and 3.0% along the vertical axis. The numerical results identify that under varus/valgus force, the TTP-FP1.5 and TTP-FP3 produce smaller talar tilt angles compared with that of TTP0, as the inversion and eversion stability are significantly enhanced. Furthermore, TTP-VP1.5 and TTP-VP3 can provide larger contact force to the tibia, providing better anterior stability under anterior drawer force. Additionally, the increased contact force of TTP-VP1.5 and TTP-VP3 with the tibial cartilage enhances the eversion stability. Besides, the increase of TTP size along the vertical axis will weaken the inversion stability under low loads, as this scaling might have compromised the stability of the subtalar joint. The present numerical study systematically investigates the effect of different ways of increasing TTP size on ankle stability after TTP.

References

1.
Kelikian
,
A. S.
,
2011
, “
Sarrafians Anatomy of the Foot and Ankle Descriptive, Topograph
,” Lippincott Williams & Wilkins, Philadelphia, PA.
2.
Qiandong
,
Y.
,
Wan
,
C.
,
Miduo
,
M.
,
Chenke
,
Z.
,
Aining
,
Y.
,
Xu
,
T.
,
Meiming
,
X.
, and
Kanglai
,
T.
,
2021
, “
Early Clinical Efficacy Analysis of Personalized Three–Dimensional Printing Talus Prosthesis in the Treatment of Collapse Talus Necrosis
,”
Chin J. Surg.
,
59
(
6
), pp.
470
476
.10.3760/cma.j.cn112139-20201021-00762
3.
Adelaar
,
R. S.
, and
Madrian
,
J. R.
,
2004
, “
Avascular Necrosis of the Talus
,”
Orthop. Clin. North Am.
,
35
(
3
), pp.
383
395
.10.1016/j.ocl.2004.02.010
4.
Lee
,
C.
,
Brodke
,
D.
,
Perdue
,
P. W.
, Jr.
, and
Patel
,
T.
,
2020
, “
Talus Fractures: Evaluation and Treatment
,”
J. Am. Acad. Orthop. Surg
,
28
(
20
), pp.
e878
e887
.10.5435/JAAOS-D-20-00116
5.
Martin Oliva
,
X.
, and
Viladot Voegeli
,
A.
,
2020
, “
Aseptic (Avascular) Bone Necrosis in the Foot and Ankle
,”
EFORT Open Rev.
,
5
(
10
), pp.
684
690
.10.1302/2058-5241.5.200007
6.
Nihal
,
A.
,
Gellman
,
R. E.
,
Embil
,
J. M.
, and
Trepman
,
E.
,
2008
, “
Ankle Arthrodesis
,”
Foot Ankle Surg.
,
14
(
1
), pp.
1
10
.10.1016/j.fas.2007.08.004
7.
Gougoulias
,
N. E.
,
Khanna
,
A.
, and
Maffulli
,
N.
,
2008
, “
History and Evolution in Total Ankle Arthroplasty
,”
Br. Med. Bull.
,
89
(
1
), pp.
111
151
.10.1093/bmb/ldn039
8.
Morash
,
J.
,
Walton
,
D. M.
, and
Glazebrook
,
M.
,
2017
, “
Ankle Arthrodesis Versus Total Ankle Arthroplasty
,”
Foot Ankle Clin.
,
22
(
2
), pp.
251
266
.10.1016/j.fcl.2017.01.013
9.
Kotnis
,
R.
,
Pasapula
,
C.
,
Anwar
,
F.
,
Cooke
,
P. H.
, and
Sharp
,
R. J.
,
2006
, “
The Management of Failed Ankle Replacement
,”
J. Bone Jt. Surg. Br.
,
88-B
(
8
), pp.
1039
1047
.10.1302/0301-620X.88B8.16768
10.
Pitts
,
C.
,
Alexander
,
B.
,
Washington
,
J.
,
Barranco
,
H.
,
Patel
,
R.
,
McGwin
,
G.
, and
Shah
,
A. B.
,
2020
, “
Factors Affecting the Outcomes of Tibiotalocalcaneal Fusion
,”
Bone Jt. J.
,
102-B
(
3
), pp.
345
351
.10.1302/0301-620X.102B3.BJJ-2019-1325.R1
11.
Ando
,
Y.
,
Yasui
,
T.
,
Isawa
,
K.
,
Tanaka
,
S.
,
Tanaka
,
Y.
, and
Takakura
,
Y.
,
2016
, “
Total Talar Replacement for Idiopathic Necrosis of the Talus: A Case Report
,”
J. Foot Ankle Surg.
,
55
(
6
), pp.
1292
1296
.10.1053/j.jfas.2015.07.015
12.
Kadakia
,
R. J.
,
Akoh
,
C. C.
,
Chen
,
J.
,
Sharma
,
A.
, and
Parekh
,
S. G.
,
2020
, “
3D Printed Total Talus Replacement for Avascular Necrosis of the Talus
,”
Foot Ankle Int.
,
41
(
12
), pp.
1529
1536
.10.1177/1071100720948461
13.
Tonogai
,
I.
,
Hamada
,
D.
,
Yamasaki
,
Y.
,
Wada
,
K.
,
Takasago
,
T.
,
Tsutsui
,
T.
,
Goto
,
T.
, and
Sairyo
,
K.
,
2017
, “
Custom-Made Alumina Ceramic Total Talar Prosthesis for Idiopathic Aseptic Necrosis of the Talus: Report of Two Cases
,”
Case Rep. Orthop.
,
2017
, pp.
1
7
.10.1155/2017/8290804
14.
Scott
,
D. J.
,
Steele
,
J.
,
Fletcher
,
A.
, and
Parekh
,
S. G.
,
2020
, “
Early Outcomes of 3D Printed Total Talus Arthroplasty
,”
Foot Ankle Spec.
,
13
(
5
), pp.
372
377
.10.1177/1938640019873536
15.
Huang
,
J.
,
Xie
,
F.
,
Tan
,
X.
,
Xing
,
W.
,
Zheng
,
Y.
, and
Zeng
,
C.
,
2021
, “
Treatment of Osteosarcoma of the Talus With a 3D-Printed Talar Prosthesis
,”
J. Foot Ankle Surg.
,
60
(
1
), pp.
194
198
.10.1053/j.jfas.2020.01.012
16.
Tochigi
,
T.
,
Rudert
., and
J.
,
Saltzman
,
2006
, “
Contribution of Articular Suface Geometry to Ankle Stabilization
,”
J. Bone Joint Surg.
,
25
, pp.
2704
2713
.10.2106/JBJS.E.00758
17.
Abramson
,
M.
,
Hilton
,
T.
,
Hosking
,
K.
,
Campbell
,
N.
,
Dey
,
R.
, and
McCollum
,
G.
,
2021
, “
Total Talar Replacements Short-Medium Term Case Series, South Africa 2019
,”
J. Foot Ankle Surg.
,
60
(
1
), pp.
182
186
.10.1053/j.jfas.2020.08.015
18.
Sato
,
G.
,
Saengsin
,
J.
,
Sornsakrin
,
P.
,
Bhimani
,
R.
,
Lubberts
,
B.
,
Taniguchi
,
A.
,
DiGiovanni
,
C.
, and
Tanaka
,
Y.
,
2022
, “
The Stability of Total Talar prosthesis-How Stable to Dislocation? Cadaveric Study
,”
J. Orthop. Res.
,
40
(
9
), pp.
2189
2195
.10.1002/jor.25237
19.
Desai
,
S. J.
,
Lalone
,
E.
,
Athwal
,
G. S.
,
Ferreira
,
L. M.
,
Johnson
,
J. A.
, and
King
,
G. J.
,
2016
, “
Hemiarthroplasty of the Elbow: The Effect of Implant Size on Joint Congruency
,”
J Shoulder Elbow Surg.
,
25
(
2
), pp.
297
303
.10.1016/j.jse.2015.09.022
20.
Wang
,
Y.
,
Wong
,
D. W.
, and
Zhang
,
M.
,
2016
, “
Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
213
221
.10.1007/s10439-015-1359-7
21.
Zhang
,
Y.
,
Awrejcewicz
,
J.
,
Szymanowska
,
O.
,
Shen
,
S.
,
Zhao
,
X.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2018
, “
Effects of Severe Hallux Valgus on Metatarsal Stress and the Metatarsophalangeal Loading During Balanced Standing: A Finite Element Analysis
,”
Comput. Biol. Med.
,
97
, pp.
1
7
.10.1016/j.compbiomed.2018.04.010
22.
Gültekin
,
A.
,
Acar
,
E.
,
Uğur
,
L.
,
Yıldız
,
A.
, and
Serarslan
,
U.
,
2021
, “
The Importance of Bohler’s Angle in Calcaneus Geometry: A Finite Element Model Study
,”
Jt. Dis. Relat. Surg.
,
32
(
2
), pp.
420
427
.10.52312/jdrs.2021.81251
23.
Wang
,
Y.
,
Li
,
Z.
,
Wong
,
D. W.
,
Cheng
,
C. K.
, and
Zhang
,
M.
,
2018
, “
Finite Element Analysis of Biomechanical Effects of Total Ankle Arthroplasty on the Foot
,”
J. Orthop. Transl.
,
12
, pp.
55
65
.10.1016/j.jot.2017.12.003
24.
Mondal
,
S.
,
MacManus
,
D. B.
,
Ghosh
,
R.
,
Banagunde
,
A.
, and
Dunne
,
N.
,
2024
, “
A Numerical Investigation of Stress, Strain, and Bone Density Changes Due to Bone Remodelling in the Talus Bone Following Total Ankle Arthroplasty
,”
J. Med. Eng. Technol.
,
48
(
1
), pp.
1
11
.10.1080/03091902.2024.2355319
25.
Moideen
,
I. S. M.
,
Lim
,
C. T.
,
Yeow
,
R. C. H.
, and
Chong
,
D. Y. R.
,
2020
, “
Finite Element Analysis of Bone‐Prosthesis Interface Micromotion for Cementless Talar Component Fixation Through Critical Loading Conditions
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
3
), p. e3310.10.1002/cnm.3310
26.
Chen
,
T. L.
,
Wang
,
Y.
,
Peng
,
Y.
,
Zhang
,
G.
,
Hong
,
T. T.
, and
Zhang
,
M.
,
2023
, “
Dynamic Finite Element Analyses to Compare the Influences of Customised Total Talar Replacement and Total Ankle Arthroplasty on Foot Biomechanics During Gait
,”
J. Orthop. Transl.
,
38
, pp.
32
43
.10.1016/j.jot.2022.07.013
27.
Zhang
,
M. Y.
,
Xu
,
C.
, and
Li
,
K. H.
,
2011
, “
Finite Element Analysis of Nonanatomic Tenodesis Reconstruction Methods of Combined Anterior Talofibular Ligament and Calcaneofibular Ligament Deficiency
,”
Foot Ankle Int.
,
32
(
10
), pp.
1000
1008
.10.3113/FAI.2011.1000
28.
Forestiero
,
A.
,
Carniel
,
E. L.
,
Fontanella
,
C. G.
, and
Natali
,
A. N.
,
2017
, “
Numerical Model for Healthy and Injured Ankle Ligaments
,”
Aust. Phys. Eng. Sci. Med.
,
40
(
2
), pp.
289
295
.10.1007/s13246-017-0533-7
29.
Bajuri
,
M. N.
,
Kadir
,
M. R.
,
Amin
,
I. M.
, and
Ochsner
,
A.
,
2012
, “
Biomechanical Analysis of Rheumatoid Arthritis of the Wrist Joint
,”
Proc. Inst. Mech. Eng. H
,
226
(
7
), pp.
510
520
.10.1177/0954411912445846
30.
Linklater
,
J.
,
Hayter
,
C. L.
,
Vu
,
D.
, and
Tse
,
K.
,
2009
, “
Anatomy of the Subtalar Joint and Imaging of Talo-Calcaneal Coalition
,”
Skeletal Radiol.
,
38
(
5
), pp.
437
449
.10.1007/s00256-008-0615-4
31.
Golano
,
P.
,
Vega
,
J.
,
de Leeuw
,
P. A.
,
Malagelada
,
F.
,
Manzanares
,
M. C.
,
Gotzens
,
V.
, and
van Dijk
,
C. N.
,
2010
, “
Anatomy of the Ankle Ligaments: A Pictorial Essay
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
5
), pp.
557
569
.10.1007/s00167-010-1100-x
32.
Yao
,
Y.
,
Mo
,
Z.
,
Wu
,
G.
,
Guo
,
J.
,
Li
,
J.
,
Wang
,
L.
, and
Fan
,
Y.
,
2021
, “
A Personalized 3D-Printed Plate for Tibiotalocalcaneal Arthrodesis: Design, Fabrication, Biomechanical Evaluation and Postoperative Assessment
,”
Comput. Biol. Med.
,
133
, p.
104368
.10.1016/j.compbiomed.2021.104368
33.
Li
,
J.
,
Wei
,
Y.
, and
Wei
,
M.
,
2020
, “
Finite Element Analysis of the Effect of Talar Osteochondral Defects of Different Depths on Ankle Joint Stability
,”
Med. Sci. Monit.
,
26
, p.
e921823
.10.12659/MSM.921823
34.
Wang
,
Y.
,
Wong
,
D. W.
,
Tan
,
Q.
,
Li
,
Z.
, and
Zhang
,
M.
,
2019
, “
Total Ankle Arthroplasty and Ankle Arthrodesis Affect the Biomechanics of the Inner Foot Differently
,”
Sci. Rep.
,
9
(
1
), p.
13334
.10.1038/s41598-019-50091-6
35.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng. H
,
224
(
7
), pp.
801
812
.10.1243/09544119JEIM649
36.
Stormont
,
D. M.
,
Morrey
,
B. F.
, and
An
,
K.-N.
,
1985
, “
Stability of Loaded Ankle Relation Between Articular Restrain and Primary and Secondary Restraints
,”
Am. J. Sports Med.
,
13
(
5
), pp.
295
300
.10.1177/036354658501300502
37.
Michels
,
F.
,
Taylan
,
O.
,
Stockmans
,
F.
,
Vereecke
,
E.
,
Scheys
,
L.
, and
Matricali
,
G.
,
2022
, “
The Different Subtalar Ligaments Show Significant Differences in Their Mechanical Properties
,”
Foot Ankle Surg.
,
28
(
7
), pp.
1014
1020
.10.1016/j.fas.2022.02.008
You do not currently have access to this content.