Abstract

Topological features of time-dependent, three-dimensional (3D) vector flow fields, such as wall shear stress (WSS) fixed points, are considered surrogates of pathological blood flow dynamics in cardiovascular diseases. Fixed-point visualizations are typically constrained to two-dimensional (2D) spaces, yet they aim to display complex spatiotemporal (four-dimensional (4D)) dynamics. There is a need for visualization strategies to reduce occlusion and reliance on animations to allow the detection of holistic flow patterns. Using intracranial aneurysms as a use case, we present the fixed-point carousel, a novel approach to visually depicting the “4D” nature of WSS fixed points via (1) topographic mapping of the 3D aneurysm sac to overcome occlusion while preserving fixed-point distances and sac morphological features; and (2) arranging these into a carousel model to present with temporal dimension holistically. Examples are presented for image-based computational fluid dynamic (CFD) models of intracranial aneurysms, illuminating the intricate and distinct fixed-point trajectories and interactions, a necessary step toward understanding the volumetric flow manifolds that drive them for this and other cardiovascular—and potentially nonbiomedical—fluid dynamics applications.

References

1.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
(
1
), pp.
299
329
.10.1146/annurev.bioeng.1.1.299
2.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
García-Cardeña
,
G.
, and
Gimbrone
,
M. A.
, Jr.
,
2004
, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
41
), pp.
14871
14876
.10.1073/pnas.0406073101
3.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2018
, “
Wall Shear Stress Fixed Points in Cardiovascular Fluid Mechanics
,”
J. Biomech.
,
73
, pp.
145
152
.10.1016/j.jbiomech.2018.03.034
4.
Tobak
,
M.
, and
Peake
,
D. J.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.10.1146/annurev.fl.14.010182.000425
5.
Joshi
,
A.
,
Caban
,
J.
,
Rheingans
,
P.
, and
Sparling
,
L.
,
2009
, “
Case Study on Visualizing Hurricanes Using Illustration-Inspired Techniques
,”
IEEE Trans. Visualization Comput. Graphics
,
15
(
5
), pp.
709
718
.10.1109/TVCG.2008.105
6.
Julian
,
M.
,
2015
,
Illustration-Inspired Visualization of Blood Flow Dynamics
,
University of Toronto
,
Toronto, ON, Canada
.
7.
Farghadan
,
A.
, and
Arzani
,
A.
,
2019
, “
The Combined Effect of Wall Shear Stress Topology and Magnitude on Cardiovascular Mass Transport
,”
Int. J. Heat Mass Transfer
,
131
, pp.
252
260
.10.1016/j.ijheatmasstransfer.2018.11.051
8.
Mazzi
,
V.
,
Morbiducci
,
U.
,
Calò
,
K.
,
De Nisco
,
G.
,
Lodi Rizzini
,
M.
,
Torta
,
E.
,
Caridi
,
G. C. A.
,
Chiastra
,
C.
, and
Gallo
,
D.
,
2021
, “
Wall Shear Stress Topological Skeleton Analysis in Cardiovascular Flows: Methods and Applications
,”
Mathematics
,
9
(
7
), p.
720
.10.3390/math9070720
9.
Mazzi
,
V.
,
De Nisco
,
G.
,
Hoogendoorn
,
A.
,
Calò
,
K.
,
Chiastra
,
C.
,
Gallo
,
D.
,
Steinman
,
D. A.
,
Wentzel
,
J. J.
, and
Morbiducci
,
U.
,
2021
, “
Early Atherosclerotic Changes in Coronary Arteries Are Associated With Endothelium Shear Stress Contraction/Expansion Variability
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2606
2621
.10.1007/s10439-021-02829-5
10.
Morbiducci
,
U.
,
Mazzi
,
V.
,
Domanin
,
M.
,
De Nisco
,
G.
,
Vergara
,
C.
,
Steinman
,
D. A.
, and
Gallo
,
D.
,
2020
, “
Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy
,”
Ann. Biomed. Eng.
,
48
(
12
), pp.
2936
2949
.10.1007/s10439-020-02607-9
11.
Candreva
,
A.
,
Pagnoni
,
M.
,
Rizzini
,
M. L.
,
Mizukami
,
T.
,
Gallinoro
,
E.
,
Mazzi
,
V.
,
Gallo
,
D.
, et al.,
2022
, “
Risk of Myocardial Infarction Based on Endothelial Shear Stress Analysis Using Coronary Angiography
,”
Atherosclerosis
,
342
, pp.
28
35
.10.1016/j.atherosclerosis.2021.11.010
12.
Zhang
,
Y.
,
Takao
,
H.
,
Murayama
,
Y.
, and
Qian
,
Y.
,
2013
, “
Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
,”
Sci. World J.
,
2013
(
1
), p.
508131
.10.1155/2013/508131
13.
Goodarzi Ardakani
,
V.
,
Tu
,
X.
,
Gambaruto
,
A. M.
,
Velho
,
I.
,
Tiago
,
J.
,
Sequeira
,
A.
, and
Pereira
,
R.
,
2019
, “
Near-Wall Flow in Cerebral Aneurysms
,”
Fluids
,
4
(
2
), p.
89
.10.3390/fluids4020089
14.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
2006
, “
Cerebral Aneurysms
,”
New Engl. J. Med.
,
355
(
9
), pp.
928
939
.10.1056/NEJMra052760
15.
Korja
,
M.
,
Lehto
,
H.
, and
Juvela
,
S.
,
2014
, “
Lifelong Rupture Risk of Intracranial Aneurysms Depends on Risk Factors: A Prospective Finnish Cohort Study
,”
Stroke
,
45
(
7
), pp.
1958
1963
.10.1161/STROKEAHA.114.005318
16.
Hilditch
,
C. A.
,
Brinjikji
,
W.
,
Tsang
,
A.
,
Nicholson
,
P.
,
Kostynskyy
,
A.
,
Tymianski
,
M.
,
Krings
,
T.
,
Radovanovic
,
I.
, and
Pereira
,
V.
,
2021
, “
Application of PHASES and ELAPSS Scores to Ruptured Cerebral Aneurysms: How Many Would Have Been Conservatively Managed?
,”
J. Neurosurg. Sci.
,
65
(
1
), pp.
33
37
.10.23736/S0390-5616.18.04498-3
17.
Murayama
,
Y.
,
Fujimura
,
S.
,
Suzuki
,
T.
, and
Takao
,
H.
,
2019
, “
Computational Fluid Dynamics as a Risk Assessment Tool for Aneurysm Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E12
.10.3171/2019.4.FOCUS19189
18.
Chung
,
B. J.
, and
Cebral
,
J. R.
,
2015
, “
CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
122
138
.10.1007/s10439-014-1093-6
19.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
20.
Chung
,
B. J.
,
Mut
,
F.
,
Putman
,
C. M.
,
Hamzei-Sichani
,
F.
,
Brinjikji
,
W.
,
Kallmes
,
D.
,
Jimenez
,
C. M.
, and
Cebral
,
J. R.
,
2018
, “
Identification of Hostile Hemodynamics and Geometries of Cerebral Aneurysms: A Case-Control Study
,”
Am. J. Neuroradiol.
,
39
(
10
), pp.
1860
1866
.10.3174/ajnr.A5764
21.
Salimi Ashkezari
,
S. F.
,
Mut
,
F.
,
Chung
,
B. J.
,
Yu
,
A. K.
,
Stapleton
,
C. J.
,
See
,
A. P.
,
Amin-Hanjani
,
S.
, et al.,
2021
, “
Hemodynamics in Aneurysm Blebs With Different Wall Characteristics
,”
J. Neurointerventional Surg.
,
13
(
7
), pp.
642
646
.10.1136/neurintsurg-2020-016601
22.
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2014
, “
Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators
,”
Am. J. Neuroradiol.
,
35
(
3
), pp.
536
543
.10.3174/ajnr.A3793
23.
Khan
,
M. O.
,
Arana
,
V. T.
,
Najafi
,
M.
,
MacDonald
,
D. E.
,
Natarajan
,
T.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2021
, “
On the Prevalence of Flow Instabilities From High-Fidelity Computational Fluid Dynamics of Intracranial Bifurcation Aneurysms
,”
J. Biomech.
,
127
, p.
110683
.10.1016/j.jbiomech.2021.110683
24.
MacDonald
,
D. E.
,
Najafi
,
M.
,
Temor
,
L.
, and
Steinman
,
D. A.
,
2022
, “
Spectral Bandedness in High-Fidelity Computational Fluid Dynamics Predicts Rupture Status in Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
144
(
6
), p.
061004
.10.1115/1.4053403
25.
Goubergrits
,
L.
,
Thamsen
,
B.
,
Berthe
,
A.
,
Poethke
,
J.
,
Kertzscher
,
U.
,
Affeld
,
K.
,
Petz
,
C.
,
Hege
,
H. C.
,
Hoch
,
H.
, and
Spuler
,
A.
,
2010
, “
In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model With and Without Coils
,”
Am. J. Neuroradiol.
,
31
(
8
), pp.
1521
1528
.10.3174/ajnr.A2121
26.
Reininghaus
,
J.
, and
Hotz
,
I.
,
2010
, “
Combinatorial 2D Vector Field Topology Extraction and Simplification
,”
Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications
,
Springer
,
Berlin, Germany
, pp.
103
114
.10.1007/978-3-642-15014-2_9
27.
Petz
,
C.
,
Pöthkow
,
K.
, and
Hege
,
H. C.
,
2012
, “
Probabilistic Local Features in Uncertain Vector Fields With Spatial Correlation
,”
Comput. Graphics Forum
,
31
(
3pt2
), pp.
1045
1054
.10.1111/j.1467-8659.2012.03097.x
28.
Sujudi
,
D.
, and
Haimes
,
R.
,
1995
, “
Identification of Swirling Flow in 3D Vector Fields
,”
AIAA
Paper No. 1995-1715.10.2514/6.1995-1715
29.
Rossl
,
C.
, and
Theisel
,
H.
,
2012
, “
Streamline Embedding for 3D Vector Field Exploration
,”
IEEE Trans. Visualization Comput. Graphics
,
18
(
3
), pp.
407
420
.10.1109/TVCG.2011.78
30.
Mazzi
,
V.
,
Gallo
,
D.
,
Calò
,
K.
,
Najafi
,
M.
,
Khan
,
M. O.
,
De Nisco
,
G.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2020
, “
A Eulerian Method to Analyze Wall Shear Stress Fixed Points and Manifolds in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1403
1423
.10.1007/s10237-019-01278-3
31.
Van der Stigchel
,
S.
,
2020
, “
An Embodied Account of Visual Working Memory
,”
Visual Cognit.
,
28
(
5–8
), pp.
414
419
.10.1080/13506285.2020.1742827
32.
Coppin
,
P.
,
Harvey
,
J.
,
Valen-Sendstad
,
K.
,
Steinman
,
D.
, and
Steinman
,
D. A.
,
2014
, “
Illustration-Inspired Visualization of Blood Flow Dynamics
,”
2014 18th International Conference on Information Visualisation
,
Paris, France
, July 16–18, pp.
333
335
.10.1109/IV.2014.19
33.
Valen-Sendstad
,
K.
,
Mardal
,
K. A.
, and
Steinman
,
D. A.
,
2013
, “
High-Resolution CFD Detects High-Frequency Velocity Fluctuations in Bifurcation, but Not Sidewall, Aneurysms
,”
J. Biomech.
,
46
(
2
), pp.
402
407
.10.1016/j.jbiomech.2012.10.042
34.
Cancelliere
,
N. M.
,
Najafi
,
M.
,
Brina
,
O.
,
Bouillot
,
P.
,
Vargas
,
M. I.
,
Lovblad
,
K. O.
,
Krings
,
T.
,
Pereira
,
V. M.
, and
Steinman
,
D. A.
,
2020
, “
4D-CT Angiography Versus 3D-Rotational Angiography as the Imaging Modality for Computational Fluid Dynamics of Cerebral Aneurysms
,”
J. Neurointerventional Surg.
,
12
(
6
), pp.
626
630
.10.1136/neurintsurg-2019-015389
35.
Hoi
,
Y.
,
Wasserman
,
B. A.
,
Xie
,
Y. J.
,
Najjar
,
S. S.
,
Ferruci
,
L.
,
Lakatta
,
E. G.
,
Gerstenblith
,
G.
, and
Steinman
,
D. A.
,
2010
, “
Characterization of Volumetric Flow Rate Waveforms at the Carotid Bifurcations of Older Adults
,”
Physiol. Meas.
,
31
(
3
), pp.
291
302
.10.1088/0967-3334/31/3/002
36.
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2015
, “
Oasis: A High-Level/High-Performance Open Source Navier–Stokes Solver
,”
Comput. Phys. Commun.
,
188
, pp.
177
188
.10.1016/j.cpc.2014.10.026
37.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2015
, “
Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics Versus Mesh and Time-Step Resolution
,”
Am. J. Neuroradiol.
,
36
(
7
), pp.
1310
1316
.10.3174/ajnr.A4263
38.
Eulzer
,
P.
,
Engelhardt
,
S.
,
Lichtenberg
,
N.
,
De Simone
,
R.
, and
Lawonn
,
K.
,
2019
, “
Temporal Views of Flattened Mitral Valve Geometries
,”
IEEE Trans. Visualization Comput. Graphics
,
26
(
1
), pp.
971
980
.10.1109/TVCG.2019.2934337
39.
Meuschke
,
M.
,
Voß
,
S.
,
Preim
,
B.
, and
Lawonn
,
K.
,
2018
, “
Exploration of Blood Flow Patterns in Cerebral Aneurysms During the Cardiac Cycle
,”
Comput. Graphics
,
72
, pp.
12
25
.10.1016/j.cag.2018.01.012
40.
Natarajan
,
T.
,
Singh-Gryzbon
,
S.
,
Chen
,
H.
,
Sadri
,
V.
,
Ruile
,
P.
,
Neumann
,
F. J.
,
Yoganathan
,
A. P.
, and
Dasi
,
L. P.
,
2024
, “
Sensitivity of Post-TAVR Hemodynamics to the Distal Aortic Arch Anatomy: A High-Fidelity CFD Study
,”
Cardiovasc. Eng. Technol.
,
15
(
4
), pp.
463
480
.10.1007/s13239-024-00728-z
41.
Hong
,
W.
,
Gu
,
X.
,
Qiu
,
F.
,
Jin
,
M.
, and
Kaufman
,
A.
,
2006
, “
Conformal Virtual Colon Flattening
,”
Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling
, Wales, UK, June 6–8, pp.
85
93
.10.1145/1128888.1128901
42.
Kreiser
,
J.
,
Meuschke
,
M.
,
Mistelbauer
,
G.
,
Preim
,
B.
, and
Ropinski
,
T.
,
2018
, “
A Survey of Flattening-Based Medical Visualization Techniques
,”
Comput. Graphics Forum
,
37
(
3
), pp.
597
624
.10.1111/cgf.13445
43.
Kurihara
,
N.
,
2011
, “
MR Imaging of Cerebral Aneurysms
,”
Neurovascular Imaging: MRI and Microangiography
, Springer-Verlag, London, UK, pp.
345
372
.10.1007/978-1-84882-134-7
44.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
, 2002, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graphics
,
21
(
3
), pp.
362
371
.10.1145/566654.566590
45.
Rabinovich
,
M.
,
Poranne
,
R.
,
Panozzo
,
D.
, and
Sorkine-Hornung
,
O.
,
2017
, “
Scalable Locally Injective Mappings
,”
ACM Trans. Graphics
,
36
(
2
), pp.
1
16
.10.1145/2983621
46.
Liu
,
L.
,
Zhang
,
L.
,
Xu
,
Y.
,
Gotsman
,
C.
, and
Gortler
,
S. J.
,
2008
, “
A Local/Global Approach to Mesh Parameterization
,”
Comput. Graphics Forum
,
27
(
5
), pp.
1495
1504
.10.1111/j.1467-8659.2008.01290.x
47.
Jacobson
,
A.
,
Panozzo
,
D.
,
Schüller
,
C.
,
Diamanti
,
O.
,
Zhou
,
Q.
, and
Pietroni
,
N.
,
2018
, “
libigl: A Simple C++ Geometry Processing Library
,” Online, accessed Aug. 2024, https://libigl.github.io/
48.
Salimi Ashkezari
,
S. F.
,
Detmer
,
F. J.
,
Mut
,
F.
,
Chung
,
B. J.
,
Yu
,
A. K.
,
Stapleton
,
C. J.
,
See
,
A. P.
, et al.,
2021
, “
Blebs in Intracranial Aneurysms: Prevalence and General Characteristics
,”
J. Neurointerventional Surg.
,
13
(
3
), pp.
226
230
.10.1136/neurintsurg-2020-016274
49.
Piccinelli
,
M.
,
Steinman
,
D. A.
,
Hoi
,
Y.
,
Tong
,
F.
,
Veneziani
,
A.
, and
Antiga
,
L.
,
2012
, “
Automatic Neck Plane Detection and 3D Geometric Characterization of Aneurysmal Sacs
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2188
2211
.10.1007/s10439-012-0577-5
50.
Steinman
,
D. A.
,
Coppin
,
P. W.
, and
Steinman
,
D. A.
,
2021
, “
Narcissus and Echo: Reflections on an Art-Science Collaboration
,”
Leonardo
,
54
(
5
), pp.
552
557
.10.1162/leon_a_02009
51.
McCloud
,
S.
, and
Martin
,
M.
,
1993
,
Understanding Comics: The Invisible Art
, Vol. 106,
Kitchen Sink Press
,
Northampton, MA
.
52.
Ramachandran
,
V. S.
, and
Hirstein
,
W.
,
1999
, “
The Science of Art: A Neurological Theory of Aesthetic Experience
,”
J. Conscious. Stud.
,
6
(
6–7
), pp.
15
51
.https://www.researchgate.net/publication/233556531_The_Science_of_Art_A_Neurological_Theory_of_Aesthetic_Experience
53.
Hunt
,
J. C.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.10.1017/S0022112078001068
54.
Gerrits
,
T.
,
Rössl
,
C.
, and
Theisel
,
H.
,
2017
, “
Glyphs for General Second-Order 2D and 3D Tensors
,”
IEEE Trans. Visualization Comput. Graphics
,
23
(
1
), pp.
980
989
.10.1109/TVCG.2016.2598998
55.
Wilde
,
T.
,
Rossl
,
C.
, and
Theisel
,
H.
,
2019
, “
Recirculation Surfaces for Flow Visualization
,”
IEEE Trans. Visualization Comput. Graphics
,
25
(
1
), pp.
946
955
.10.1109/TVCG.2018.2864813
56.
Oeltze-Jafra
,
S.
,
Cebral
,
J. R.
,
Janiga
,
G.
, and
Preim
,
B.
,
2016
, “
Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics
,”
IEEE Trans. Visualization Comput. Graphics
,
22
(
1
), pp.
757
766
.10.1109/TVCG.2015.2467203
57.
Oeltze
,
S.
,
Lehmann
,
D. J.
,
Kuhn
,
A.
,
Janiga
,
G.
,
Theisel
,
H.
, and
Preim
,
B.
,
2014
, “
Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms
,”
IEEE Trans. Visualization Comput. Graphics
,
20
(
5
), pp.
686
701
.10.1109/TVCG.2013.2297914
You do not currently have access to this content.