Grazing bifurcations in impact oscillators characterize the transition in asymptotic dynamics between impacting and nonimpacting motions. Several different grazing bifurcation scenarios under variations of a single system parameter have been previously documented in the literature. In the present paper, the transition between two characteristically different co-dimension-one grazing bifurcation scenarios is found to be associated with the presence of certain co-dimension-two grazing bifurcation points and their unfolding in parameter space. The analysis investigates the distribution of such degenerate bifurcation points along the grazing bifurcation manifold in examples of single-degree-of-freedom oscillators. Unfoldings obtained with the discontinuity-mapping technique are used to explore the possible influence on the global dynamics of the smooth co-dimension-one bifurcations of the impacting dynamics that emanate from such co-dimension-two points. It is shown that attracting impacting motion may result from parameter variations through a co-dimension-two grazing bifurcation of an initially unstable limit cycle in a nonlinear micro-electro-mechanical systems (MEMS) oscillator.

1.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1983,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectorfields
,
Springer-Verlag
, New York.
2.
Zeeman
,
E. C.
, 1977,
Catastrophe Theory: Selected Papers 1972–1977
,
Addison-Wesley
, Reading, MA.
3.
Golubitsky
,
M.
, and
Schaeffer
,
D. G.
, 1985,
Singularities and Groups in Bifurcation Theory
,
Springer-Verlag
, Berlin.
4.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H. E.
, and
Grebogi
,
C.
, 1994, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
1063-651X,
50
, pp.
4427
4444
.
5.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 2000, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
136
, pp.
280
302
.
6.
Di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2000, “
Normal Form Maps for Grazing Bifurcationsin n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
, pp.
222
254
.
7.
Nordmark
,
A. B.
, and
Kowalczyk.
P.
, 2006, “
A Codimension-Two Scenario of Sliding Solutions
,”
Nonlinearity
0951-7715,
19
, pp.
1
26
.
8.
Zhao
,
X.
, and
Dankowicz
,
H.
, 2006, “
Unfolding Degenerate Grazing Dynamics in Impact Actuators
,”
Nonlinearity
0951-7715,
19
, pp.
399
418
.
9.
Nordmark
,
A. B.
, 1991, “
Non-periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
10.
Dankowicz
,
H.
, and
Zhao
,
X.
, 2005, “
Local Analysis of Co-dimension-One and Co-dimension-Two Grazing Bifurcations in Impact Microactuators
,”
Physica D
0167-2789,
202
, pp.
238
257
.
11.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
, 1997, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
1261
1276
.
12.
Molenaar
,
J.
,
de Weger
,
J. G.
, and
Van de Water
,
W.
, 2001, “
Mappings of Grazing Impact Oscillators
,”
Nonlinearity
0951-7715,
14
(
2
), pp.
301
321
.
13.
Foale
,
S.
, 1994, “
Analytical Determination of Bifurcations in an Impact Oscillator
,”
Proc. R. Soc. London, Ser. A
1364-5021,
347
, pp.
373
364
.
14.
Foale
,
S.
, and
Bishop
,
R.
, 1994, “
Bifurcations in Impacting Systems
,”
Nonlinear Dyn.
0924-090X,
6
, pp.
285
299
.
15.
Mita
,
M.
,
Arai
,
M.
,
Tensaka
,
S.
,
Kobayashi
,
D.
, and
Fujita
,
H.
, 2003, “
A Micromachined Impact Microactuator Driven by Electrostatic Force
,”
J. Microelectromech. Syst.
1057-7157,
12
(
1
), pp.
37
41
.
16.
Zhao
,
X.
,
Dankowicz
,
H.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2004, “
Modelling and Simulation Methodology for Impact Microactuators
,”
J. Microelectromech. Syst.
1057-7157,
14
, pp.
775
784
.
17.
Zhao
,
X.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2005, “
Nonlinear Dynamics of an Electrically Driven Impact Microactuator
,”
Nonlinear Dyn.
0924-090X,
40
, pp.
227
239
.
You do not currently have access to this content.