In this paper, nonlinear vibration of a single-walled carbon nanotube (SWCNT) with simply supported ends is investigated based on von Karman's geometric nonlinearity and nonlocal shell theory. The SWCNT is designated as an individual shell, and the Donnell's formulations of a cylindrical shell are used to obtain the governing equations. The Galerkin's procedure is used to discretized partial differential equations (PDEs) into the ordinary differential equations (ODEs) of motion, and the method of averaging is applied to obtain an analytical solution of the nonlinear vibration of (10,0), (20,0), and (30,0) zigzag SWCNTs. The effects of the nonlocal parameters, nonlinear parameters, different aspect ratios, and different circumferential wave numbers are investigated. The results of the classical and the nonlocal models are compared with different nonlocal elasticity constants (e0a). It is shown that the nonlocal parameter predicts different resonant frequencies in comparison to the local models. The softening and/or hardening nonlinear behaviors of the CNTs may change against the nonlocal parameters. Hence, considering the geometrical nonlinearity and the nonlocal elasticity effects, the dynamical models of the SWCNTs predict their vibration behaviors accurately and should not be ignored during theoretical modeling.

References

1.
Yakobson
,
B. I.
, and
Avouris
,
P.
,
2001
, “
Mechanical Properties of Carbon Nanotubes
,”
Carbon Nanotubes
(Topics in Applied Physics),
Springer
, Vol.
80
, pp.
287
327
.10.1007/3-540-39947-X_12
2.
Rafiee
,
R.
, and
Moghadam
,
R. M.
,
2014
, “
On the Modeling of Carbon Nanotubes: A Critical Review
,”
Composites Part B
,
56
, pp.
435
449
.10.1016/j.compositesb.2013.08.037
3.
Gibson
,
R. F.
,
Ayorindea
,
E. O.
, and
Wenb
,
Y.-F.
,
2007
, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
67
(
1
), pp.
1
28
.10.1016/j.compscitech.2006.03.031
4.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
J. Sound Vib.
,
301
(
3–5
), pp.
592
607
.10.1016/j.jsv.2006.10.020
5.
Natsuki
,
T.
,
Lei
,
X. W.
,
Ni
,
Q. Q.
, and
Endo
,
M.
,
2010
, “
Vibrational Analysis of Double Walled Carbon Nanotubes With Inner and Outer Nanotubes of Different Lengths
,”
Phys. Lett. A
,
374
(
46
), pp.
4684
4689
.10.1016/j.physleta.2010.08.080
6.
Semmah
,
A.
,
Tounsib
,
A.
,
Zidour
,
M.
,
Heireche
,
H.
, and
Naceri
,
M.
,
2015
, “
Effect of the Chirality on Critical Buckling Temperature of Zigzag Single-Walled Carbon Nanotubes Using the Nonlocal Continuum Theory
,”
Fullerenes Nanotubes Carbon Nanostruct.
,
23
(
6
), pp.
518
522
.10.1080/1536383X.2012.749457
7.
Kiani
,
K.
,
2014
, “
Dynamic Interactions of Doubly Orthogonal Stocky Single-Walled Carbon Nanotubes
,”
Compos. Struct.
,
125
, pp.
144
158
.10.1016/j.compstruct.2014.12.057
8.
Kiani
,
K.
,
2015
, “
Free Vibration of In-Plane-Aligned Membranes of Single-Walled Carbon Nanotubes in the Presence of In-Plane-Unidirectional Magnetic Fields
,”
J. Vib. Control
(published online).10.1177/1077546314565684
9.
Soltani
,
P.
,
Kassaeia
,
A.
, and
Taherianb
,
M. M.
,
2014
, “
Nonlinear and Quasi-Linear Behavior of a Curved Carbon Nanotube Vibrating in an Electric Force Field; an Analytical Approach
,”
Acta Mech. Solida Sin.
,
27
(
1
), pp.
97
110
.10.1016/S0894-9166(14)60020-3
10.
Hawwa
,
M. A.
, and
Al Qahtani
,
H. M.
,
2010
, “
Nonlinear Oscillations of a Double-Walled Carbon Nanotube
,”
Comput. Mater. Sci.
,
48
(
1
), pp.
140
143
.10.1016/j.commatsci.2009.12.020
11.
Ansari
,
R.
, and
Hemmatnezhad
,
M.
,
2011
, “
Nonlinear Vibrations of Embedded Multi-Walled Carbon Nanotubes Using a Variational Approach
,”
Math. Comput. Modell.
,
53
(
5–6
), pp.
927
938
.10.1016/j.mcm.2010.10.029
12.
Wang
,
B.
,
Denga
,
Z.
,
Ouyangb
,
H.
, and
Zhouc
,
J.
,
2015
, “
Wave Propagation Analysis in Nonlinear Curved Single-Walled Carbon Nanotubes Based on Nonlocal Elasticity Theory
,”
Physica E
,
66
, pp.
283
292
.10.1016/j.physe.2014.09.015
13.
Soltani
,
P.
,
Ganji
,
D. D.
,
Mehdipour
,
I.
, and
Farshidianfar
,
A.
,
2012
, “
Nonlinear Vibration and Rippling Instability for Embedded Carbon Nanotubes
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
985
992
.10.1007/s12206-011-1006-7
14.
Wang
,
X.
,
Zhang
,
Y. C.
,
Xia
,
X. H.
, and
Huang
,
C. H.
,
2004
, “
Effective Bending Modulus of Carbon Nanotubes With Rippling Deformation
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6429
6439
.10.1016/j.ijsolstr.2004.04.038
15.
Smirnov
,
V.
,
Manevitch
,
L. I.
,
Strozzi
,
M.
, and
Pellicano
,
F.
,
2015
, “
The Radial Breathing Mode in CNT—The Nonlinear Theory of the Resonant Energy Exchange
,” e-print arXiv:1502.07081.
16.
Yakobson
,
B. I.
,
Barbec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.10.1103/PhysRevLett.76.2511
17.
Ru
,
C. Q.
,
Qian
,
H.
, and
Xu
,
K. Y.
,
2005
, “
Curvature Effects on Axially Compressed Buckling of a Small-Diameter Double-Walled Carbon Nanotube
,”
Int. J. Solids Struct.
,
42
(
20
), pp.
5426
5440
.10.1016/j.ijsolstr.2005.02.041
18.
Sun
,
C.
, and
Liu
,
K.
,
2007
, “
Vibration of Multi-Walled Carbon Nanotubes With Initial Axial Loading
,”
Solid State Commun.
,
143
(
4–5
), pp.
202
207
.10.1016/j.ssc.2007.05.027
19.
Elishakoff
,
I.
, and
Pentaras
,
D.
,
2009
, “
Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
322
(
4–5
), pp.
652
664
.10.1016/j.jsv.2009.02.037
20.
Fu
,
Y.
,
Hong
,
J.
, and
Wang
,
X.
,
2006
, “
Analysis of Nonlinear Vibration for Embedded Carbon Nanotubes
,”
J. Sound Vib.
,
296
(
4
), pp.
746
756
.10.1016/j.jsv.2006.02.024
21.
Walgraef
,
D.
,
2007
,”
On the Mechanics of Deformation Instabilities in Carbon Nanotubes
,”
Eur. Phys. J.-Spec. Top.
,
146
(
1
), pp.
443
457
.10.1140/epjst/e2007-00198-3
22.
Soltani
,
P.
,
Saberian
,
J.
, and
Bahramian
,
R.
,
2011
, “
Nonlinear Free and Forced Vibration Analysis of a Single-Walled Carbon Nanotube Using Shell Model
,”
Int. J. Fundam. Phys. Sci.
,
1
(
3
), pp.
47
52
.10.14331/ijfps.2012.330012
23.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer-Verlag
,
New York
.
24.
Ke
,
L. L.
,
Xiang
,
Y.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2009
, “
Nonlinear Free Vibration of Embedded Double-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
409
417
.10.1016/j.commatsci.2009.09.002
25.
Yang
,
J.
,
Ke
,
L. L.
, and
Kitipornchai
,
S.
,
2010
, “
Nonlinear Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
Physica E
,
42
(
5
), pp.
1727
1735
.10.1016/j.physe.2010.01.035
26.
Ghorbanpour Arani
,
A.
,
Zareia
,
M. Sh.
,
Amira
,
S.
, and
Khoddami Maraghia
,
Z.
,
2013
, “
Nonlinear Nonlocal Vibration of Embedded DWCNT Conveying Fluid Using Shell Model
,”
Physica B
,
410
, pp.
188
196
.10.1016/j.physb.2012.10.037
27.
Ansari
,
R.
,
Rouhi
,
H.
, and
Sahmani
,
S.
,
2011
, “
Calibration of the Analytical Nonlocal Shell Model for Vibrations of Double-Walled Carbon Nanotubes With Arbitrary Boundary Conditions Using Molecular Dynamics
,”
Int. J. Mech. Sci.
,
53
(
9
), pp.
786
792
.10.1016/j.ijmecsci.2011.06.010
28.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
.10.1017/CBO9780511619694
29.
Amabili
,
M.
,
2008
,
Nonlinear Vibration and Stability of Shell and Plate
,
Cambridge University Cambridge, UK
.
30.
Leissa
,
A. W.
,
1973
,
Vibration of Shells
,
National Aeronautics and Space Administration
,
Washington, DC
.
31.
Amabili
,
M.
,
Pellicano
,
F.
, and
Paidoussis
,
M. P.
,
1999
, “
Nonlinear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part I: Stability
,”
J. Sound Vib.
,
225
(
4
), pp.
655
699
.10.1006/jsvi.1999.2255
32.
Reddy
,
J. N.
,
2002
,
Energy Principles and Variational Methods in Applied Mechanics
, 2nd ed.,"
John Wiley & Sons, NJ
.
33.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
34.
Arash
,
B.
, and
Ansari
,
R.
,
2010
, “
Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes With Initial Strain
,”
Physica E
,
42
(
8
), pp.
2058
2064
.10.1016/j.physe.2010.03.028
35.
Khademolhosseini
,
F.
,
Rajapakse
,
R. K. N. D.
, and
Nojeh
,
A.
,
2010
, “
Torsional Buckling of Carbon Nanotubes Based on Nonlocal Elasticity Shell Models
,”
Comput. Mater. Sci.
,
48
(
4
), pp.
736
742
.10.1016/j.commatsci.2010.03.021
36.
Wang
,
Q.
,
Vardan
,
V. K.
, and
Quek
,
S. T.
,
2006
, “
Small Scale Effect on Elastic Buckling of Carbon Nanotubes With Nonlocal Continuum Model
,”
Phys. Lett. A
,
357
(
2
), pp.
130
135
.10.1016/j.physleta.2006.04.026
37.
Hao
,
M. J.
,
Wang
,
Q.
, and
Guo
,
X. M.
,
2010
, “
Small-Scale Effect on Torsional Buckling of Multi-Walled Carbon Nanotube
,”
Eur. J. Mech. A
,
29
(
1
), pp.
49
55
.10.1016/j.euromechsol.2009.05.008
38.
Nash
,
W. A.
, and
Watawala
,
L.
,
1983
, “
Influence of Initial Geometric Imperfections on Vibrations of Thin Circular Cylindrical Shell
,”
Comput. Struct.
,
16
(
1–4
), pp.
125
130
.10.1016/0045-7949(83)90154-2
39.
Evensen
,
D. A.
,
1967
,
Nonlinear Flexural Vibrations of Thin Walled Circular Cylinders
,
National Aeronautics and Space Administration
,
Washington, DC
.
40.
Amabili
,
M.
,
2006
, “
Chaotic Vibrations of Circular Cylindrical Shells Galerkin Versus Reduced Order Models Via the Proper Orthogonal Decomposition Method
,”
J. Sound Vib.
,
290
(
3–5
), pp.
736
762
.10.1016/j.jsv.2005.04.034
41.
Nayfeh
,
A. N.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley, Inc.
,
New York
.10.1002/9783527617586
42.
Gupta
,
S. S.
,
Bosco
,
F. G.
, and
Batra
,
R. C.
,
2010
,”
Wall Thickness and Elastic Moduli of Single-Walled Carbon Nanotubes From Frequencies of Axial, Torsional and Inextensional Modes of Vibration
,”
Comput. Mater. Sci.
,
47
(
4
), pp.
1049
1059
.10.1016/j.commatsci.2009.12.007
You do not currently have access to this content.