Hammerstein–Wiener (H–W) systems are a class of typical nonlinear systems. This paper studies the gradient-based parameter estimation algorithms for H–W nonlinear systems based on the multi-innovation identification theory and the data filtering technique. The proposed methods include a generalized extended stochastic gradient (GESG) algorithm, a multi-innovation GESG (MI-GESG) algorithm, a data filtering based GESG (F-GESG) algorithm and a data filtering based MI-GESG algorithm. Finally, the computational efficiency of the proposed algorithms are analyzed and compared. The simulation example verifies the theoretical results.
Issue Section:
Research Papers
References
1.
Ding
, F.
, 2013
, System Identification—New Theory and Methods
, Science Press
, Beijing, China
.2.
Ding
, F.
, 2014
, System Identification—Performances Analysis for Identification Methods
, Science Press
, Beijing, China
.3.
Merat
, K.
, Chekan
, J. A.
, and Salarieh
, H.
, 2015
, “Control of Discrete Time Chaotic Systems Via Combination of Linear and Nonlinear Dynamic Programming
,” ASME J. Comput. Nonlinear Dyn.
, 10
(1
), p. 011008
.4.
Halder
, A.
, and Bhattacharya
, R.
, 2014
, “Probabilistic Model Validation for Uncertain Nonlinear Systems
,” Automatica
, 50
(8
), pp. 2038
–2050
.5.
Deshmukh
, V.
, 2011
, “Parametric Estimation for Delayed Nonlinear Time-Varying Dynamical Systems
,” ASME J. Comput. Nonlinear Dyn.
, 6
(4
), p. 041003
.6.
Vanbeylen
, L.
, 2014
, “A Fractional Approach to Identify Wiener–Hammerstein Systems
,” Automatica
, 50
(3
), pp. 903
–909
.7.
Vörös
, J.
, 2007
, “Parameter Identification of Wiener Systems With Multisegment Piecewise-Linear Nonlinearities
,” Syst. Control Lett.
, 56
(2
), pp. 99
–105
.8.
Ding
, F.
, and Guo
, L. J.
, 2015
, “Multi-Innovation Identification Methods for Linear-Parameter Systems
,” J. Nanjing Univ. Info. Sci. Tech. (Natural Science Ed.),
7
(4), pp. 289
–312
.9.
Ding
, F.
, and Mao
, Y. W.
, 2015
, “Multi-Innovation Identification Methods for Input Nonlinear Equation-Error Autoregressive Systems
,” J. Nanjing Univ. Info. Sci. Tech. (Natural Science Ed.),
7
(1
), pp. 1
–23
.10.
Ansari
, R.
, Gholami
, R.
, and Sahmani
, S.
, 2012
, “Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory
,” ASME J. Comput. Nonlinear Dyn.
, 7
(3
), p. 031009
.11.
Wang
, C.
, and Tang
, T.
, 2014
, “Several Gradient-Based Iterative Estimation Algorithms for a Class of Nonlinear Systems Using the Filtering Technique
,” Nonlinear Dyn.
, 77
(3
), pp. 769
–780
.12.
Ding
, F.
, and Chen
, T.
, 2007
, “Performance Analysis of Multi-Innovation Gradient Type Identification Methods
,” Automatica
, 43
(1
), pp. 1
–14
.13.
Hu
, Y. B.
, Liu
, B. L.
, and Zhou
, Q.
, 2014
, “A Multi-Innovation Generalized Extended Stochastic Gradient Algorithm for Output Nonlinear Autoregressive Moving Average Systems
,” Appl. Math. Comput.
, 247
, pp. 218
–224
.14.
Davoodabadi
, I.
, Ramezani
, A. A.
, Mahmoodi-k
, M.
, and Ahmadizadeh
, P.
, 2014
, “Identification of Tire Forces Using Dual Unscented Kalman Filter Algorithm
,” Nonlinear Dyn.
, 78
(3
), pp. 1907
–1919
.15.
Hiren
, G. P.
, and Shambhu
, N. S.
, 2014
, “Third-Order Continuous-Discrete Filtering for a Nonlinear Dynamical System
,” ASME J. Comput. Nonlinear Dyn.
, 9
(3
), p. 034502
.16.
Shi
, Y.
, and Fang
, H.
, 2010
, “Kalman Filter Based Identification for Systems With Randomly Missing Measurements in a Network Environment
,” Int. J. Control
, 83
(3
), pp. 538
–551
.17.
Goodwin
, G. C.
, and Sin
, K. S.
, 1984
, Adaptive Filtering, Prediction and Control
, Prentice–Hall
, Englewood Cliffs, NJ
.18.
Ding
, F.
, Wang
, Y. J.
, and Ding
, J.
, 2015
, “Recursive Least Squares Parameter Identification Algorithms for Systems With Colored Noise Using the Filtering Technique and the Auxiliary Model
,” Digital Sig. Process.
, 37
, pp. 100
–108
.19.
Ding
, F.
, and Gu
, Y.
, 2013
, “Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State Space Systems With One-Step State Delay
,” Circuits, Syst. Sig. Process.
, 32
(2
), pp. 585
–599
.20.
Golub
, G. H.
, and Van Loan
, C. F.
, 1996
, Matrix Computations
, 3rd ed., Johns Hopkins University Press
, Baltimore, MD
.21.
Gu
, Y.
, Ding
, F.
, and Li
, J. H.
, 2015
, “States Based Iterative Parameter Estimation for a State Space Model With Multi-State Delays Using Decomposition
,” Sig. Process.
, 106
, pp. 294
–300
.22.
Zhang
, Y.
, Zhao
, Z.
, and Cui
, G. M.
, 2015
, “Auxiliary Model Method for Transfer Function Estimation From Noisy Input and Output Data
,” Appl. Math. Modell.
, 39
(15
), pp. 4257
–4265
.23.
Chen
, F. Y.
, and Ding
, F.
, 2015
, “Recursive Least Squares Identification Algorithms for Multiple-Input Nonlinear Box-Jenkins Systems Using the Maximum Likelihood Principle
,” ASME J. Comput. Nonlinear Dyn.
, 11
(2
), p. 021005
.24.
Wang
, D. Q.
, Liu
, H. B.
, and Ding
, F.
, 2015
, “Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems
,” IEEE Trans. Control Syst. Technol.
, 23
(5
), pp. 1952
–1960
.25.
Ji
, Y.
, and Liu
, X. M.
, 2015
, “Unified Synchronization Criteria for Hybrid Switching-Impulsive Dynamical Networks
,” Circuits, Syst. Sig. Process.
, 34
(5
), pp. 1499
–1517
.26.
Ji
, Y.
, Liu
, X. M.
, and Ding
, F.
, 2015
, “New Criteria for the Robust Impulsive Synchronization of Uncertain Chaotic Delayed Nonlinear Systems
,” Nonlinear Dyn.
, 79
(1
), pp. 1
–9
.27.
Ding
, J.
, Fan
, C. X.
, and Lin
, J. X.
, 2013
, “Auxiliary Model Based Parameter Estimation for Dual-Rate Output Error Systems With Colored Noise
,” Appl. Math. Modell.
, 37
(6
), pp. 4051
–4058
.28.
Ding
, J.
, and Lin
, J. X.
, 2014
, “Modified Subspace Identification for Periodically Non-Uniformly Sampled Systems by Using the Lifting Technique
,” Circuits, Syst. Signal Process.
, 33
(5
), pp. 1439
–1449
.Copyright © 2016 by ASME
You do not currently have access to this content.