General differential equations of motion in nonlinear forced vibration analysis of multilayered composite beams are derived by using the higher-order shear deformation theories (HSDT's). Viscoelastic properties of fiber-reinforced plastic composite materials are considered according to the Kelvin–Voigt viscoelastic model for transversely isotropic composite materials. The method of multiple scales is employed to perform analytical frequency amplitude relationships for superharmonic resonance. Parametric study is conducted by considering various geometrical and material parameters, employing HSDT's and first-order deformation theory (FSDT).
References
1.
Emam
, S. A.
, and Nayfeh
, A. H.
, 2009
, “Postbuckling and Free Vibrations of Composite Beams
,” Compos. Struct.
, 88
(4
), pp. 636
–642
.2.
Belouettar
, S.
, Azrar
, L.
, Daya
, E. M.
, Laptev
, V.
, and Potier-Ferry
, M.
, 2008
, “Active Control of Nonlinear Vibration of Sandwich Piezoelectric Beams: A Simplified Approach
,” Comput. Struct.
, 86
(3–5), pp. 386
–397
.3.
Reissner
, E.
, 1945
, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,” ASME J. Appl. Mech.
, 12
, pp. 69
–76
.4.
Mindlin
, R. D.
, 1951
, “Influence of Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates
,” ASME J. Appl. Mech., 18
, pp. 1031
–1036
.5.
Pagano
, N. J.
, 1969
, “Exact Solutions for Composite Laminates in Cylindrical Bending
,” J. Compos. Mater.
, 3
(3
), pp. 398
–411
.6.
Timoshenko
, S. P.
, 1922
, “On the Transverse Vibration of Bars With Uniform Cross-Section
,” Philos. Mag.
, 43
(253
), pp. 125
–131
.7.
Reddy
, J. N.
, 1984
, “A Simple Higher-Order Theory of Laminated Composite Plate
,” ASME J. Appl. Mech.
, 51
(4
), pp. 745
–752
.8.
Touratier
, M.
, 1991
, “An Efficient Standard Plate Theory
,” Int. J. Eng. Sci.
, 29
(8), pp. 901
–916
.9.
Afaq
, K. S.
, Karama
, M.
, and Mistou
, S.
, 2003
, “Un Nouveau Modèle Raffiné Pour les Structures Multicouches
,” Comptes Rendues des 13éme Journées Nationales sur les Composites
, Strasbourg, France, pp. 289
–292
.10.
Dwivedy
, S. K.
, Sahu
, K. C.
, and Babu
, S. K.
, 2007
, “Parametric Instability Region of Three Layered Soft-Cored Sandwich Beam Using Higher-Order Theory
,” J. Sound Vib.
, 304
(1–2), pp. 326
–344
.11.
Zhen
, W.
, and Wanji
, C.
, 2008
, “An Assessment of Several Displacement-Based Theories for the Vibration and Stability Analysis of Laminated Composite and Sandwich Beams
,” Compos. Struct.
, 84
(4
), pp. 337
–349
.12.
Khare
, R. K.
, and Garg
, A. A.
, 2005
, “Free Vibration of Sandwich Laminates With Two Higher-Order Shear Deformable Facet Shell Element Models
,” J. Sandwich Struct. Mater.
, 7
(3
), pp. 221
–244
.13.
Araujo
, A. L.
, Mota Soares
, C. M.
, and Mota Soares
, C. A.
, 2010
, “Finite Element Model for Hybrid Active-Passive Damping Analysis of Anisotropic Laminated Sandwich Structures
,” J. Sandwich Struct. Mater.
, 12
(4
), pp. 397
–418
.14.
Nakra
, B. C.
, 1981
, “Vibration Control With Viscoelastic Material, II
,” Shock Vib. Dig.
, 13
, pp. 17
–20
.15.
Nakra
, B. C.
, 1984
, “Vibration Control With Viscoelastic Material, III
,” Shock Vib. Dig., 16
(5
), pp. 17
–22
.16.
Moser
, K.
, and Lumassegger
, M.
, 1988
, “Increasing the Damping of Flexural Vibrations of Laminated FPC Structures by Incorporation of Soft Intermediate Plies With Minimum Reduction of Stiffness
,” Compos. Struct.
, 10
(4
), pp. 321
–333
.17.
Vaswani
, J.
, Asnani
, N. T.
, and Nakara
, B. C.
, 1988
, “Vibration and Damping Analysis of Curved Sandwich Beams With a Visco-Elastic Core
,” Compos. Struct.
, 10
(3
), pp. 231
–245
.18.
Hajela
, P.
, and Lin
, C. Y.
, 1991
, “Optimal Design for Viscoelastically Damped Beam Structures
,” ASME Appl. Mech. Rev.
, 44
(11S), pp. S96
–S106
.19.
He
, S.
, and Rao
, M. D.
, 1992
, “Prediction of Loss Factors of Curved Sandwich Beams
,” J. Sound Vib.
, 159
(1
), pp. 101
–113
.20.
Daya
, E. M.
, Azrar
, L.
, and Poitier-Ferry
, M.
, 2004
, “An Amplitude Equation for the Non-Linear Vibration of Viscoelastically Damped Sandwich Beams
,” J. Sound Vib.
, 271
(5–6), pp. 789
–813
.21.
Bilasse
, M.
, Daya
, E. M.
, and Azrar
, L.
, 2010
, “Linear and Nonlinear Vibrations Analysis of Viscoelastic Sandwich Beams
,” J. Sound Vib.
, 329
(23
), pp. 4950
–4969
.22.
Youzera
, H.
, Meftah
, S. A.
, Challamel
, N.
, and Tounsi
, A.
, 2012
, “Nonlinear Damping and Forced Vibration Analysis of Laminated Composite Beams
,” Composites, Part B
, 43
(3
), pp. 1147
–1154
.23.
Melo
, J. D. D.
, and Radford
, D. W.
, 2003
, “Viscoelastic Characterization of Transversely Isotropic Composite Laminate
,” J. Compos. Mater.
, 37
(2
), pp. 129
–145
.24.
Rachdaoui
, M. S.
, and Azrar
, L.
, 2010
, “Active Control of Secondary Resonances Piezoelectric Sandwich Beams
,” Appl. Math. Comput.
, 216
(11), pp. 3283
–3302
.25.
Alhazza
, K. A.
, Daqaq
, M. F.
, Nayfeh
, A. H.
, and Inman
, D. J.
, 2008
, “Non-Linear Vibrations of Parametrically Excited Cantilever Beams Subjected to Non-Linear Delayed-Feedback Control
,” Int. J. Non-Linear Mech.
, 43
(8
), pp. 801
–812
.26.
Khanin
, R.
, Cartmell
, M.
, and Gilbert
, A.
, 2000
, “A Computerised Implementation of the Multiple Scales Perturbation Method Using Mathematica
,” Comput. Struct.
, 76
(5
), pp. 565
–575
.Copyright © 2017 by ASME
You do not currently have access to this content.