General differential equations of motion in nonlinear forced vibration analysis of multilayered composite beams are derived by using the higher-order shear deformation theories (HSDT's). Viscoelastic properties of fiber-reinforced plastic composite materials are considered according to the Kelvin–Voigt viscoelastic model for transversely isotropic composite materials. The method of multiple scales is employed to perform analytical frequency amplitude relationships for superharmonic resonance. Parametric study is conducted by considering various geometrical and material parameters, employing HSDT's and first-order deformation theory (FSDT).

References

1.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2009
, “
Postbuckling and Free Vibrations of Composite Beams
,”
Compos. Struct.
,
88
(
4
), pp.
636
642
.
2.
Belouettar
,
S.
,
Azrar
,
L.
,
Daya
,
E. M.
,
Laptev
,
V.
, and
Potier-Ferry
,
M.
,
2008
, “
Active Control of Nonlinear Vibration of Sandwich Piezoelectric Beams: A Simplified Approach
,”
Comput. Struct.
,
86
(3–5), pp.
386
397
.
3.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
69
76
.
4.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates
,” ASME J. Appl. Mech.,
18
, pp.
1031
1036
.
5.
Pagano
,
N. J.
,
1969
, “
Exact Solutions for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mater.
,
3
(
3
), pp.
398
411
.
6.
Timoshenko
,
S. P.
,
1922
, “
On the Transverse Vibration of Bars With Uniform Cross-Section
,”
Philos. Mag.
,
43
(
253
), pp.
125
131
.
7.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory of Laminated Composite Plate
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
.
8.
Touratier
,
M.
,
1991
, “
An Efficient Standard Plate Theory
,”
Int. J. Eng. Sci.
,
29
(8), pp.
901
916
.
9.
Afaq
,
K. S.
,
Karama
,
M.
, and
Mistou
,
S.
,
2003
, “
Un Nouveau Modèle Raffiné Pour les Structures Multicouches
,”
Comptes Rendues des 13éme Journées Nationales sur les Composites
, Strasbourg, France, pp.
289
292
.
10.
Dwivedy
,
S. K.
,
Sahu
,
K. C.
, and
Babu
,
S. K.
,
2007
, “
Parametric Instability Region of Three Layered Soft-Cored Sandwich Beam Using Higher-Order Theory
,”
J. Sound Vib.
,
304
(1–2), pp.
326
344
.
11.
Zhen
,
W.
, and
Wanji
,
C.
,
2008
, “
An Assessment of Several Displacement-Based Theories for the Vibration and Stability Analysis of Laminated Composite and Sandwich Beams
,”
Compos. Struct.
,
84
(
4
), pp.
337
349
.
12.
Khare
,
R. K.
, and
Garg
,
A. A.
,
2005
, “
Free Vibration of Sandwich Laminates With Two Higher-Order Shear Deformable Facet Shell Element Models
,”
J. Sandwich Struct. Mater.
,
7
(
3
), pp.
221
244
.
13.
Araujo
,
A. L.
,
Mota Soares
,
C. M.
, and
Mota Soares
,
C. A.
,
2010
, “
Finite Element Model for Hybrid Active-Passive Damping Analysis of Anisotropic Laminated Sandwich Structures
,”
J. Sandwich Struct. Mater.
,
12
(
4
), pp.
397
418
.
14.
Nakra
,
B. C.
,
1981
, “
Vibration Control With Viscoelastic Material, II
,”
Shock Vib. Dig.
,
13
, pp.
17
20
.
15.
Nakra
,
B. C.
,
1984
, “
Vibration Control With Viscoelastic Material, III
,” Shock Vib. Dig.,
16
(
5
), pp.
17
22
.
16.
Moser
,
K.
, and
Lumassegger
,
M.
,
1988
, “
Increasing the Damping of Flexural Vibrations of Laminated FPC Structures by Incorporation of Soft Intermediate Plies With Minimum Reduction of Stiffness
,”
Compos. Struct.
,
10
(
4
), pp.
321
333
.
17.
Vaswani
,
J.
,
Asnani
,
N. T.
, and
Nakara
,
B. C.
,
1988
, “
Vibration and Damping Analysis of Curved Sandwich Beams With a Visco-Elastic Core
,”
Compos. Struct.
,
10
(
3
), pp.
231
245
.
18.
Hajela
,
P.
, and
Lin
,
C. Y.
,
1991
, “
Optimal Design for Viscoelastically Damped Beam Structures
,”
ASME Appl. Mech. Rev.
,
44
(11S), pp.
S96
S106
.
19.
He
,
S.
, and
Rao
,
M. D.
,
1992
, “
Prediction of Loss Factors of Curved Sandwich Beams
,”
J. Sound Vib.
,
159
(
1
), pp.
101
113
.
20.
Daya
,
E. M.
,
Azrar
,
L.
, and
Poitier-Ferry
,
M.
,
2004
, “
An Amplitude Equation for the Non-Linear Vibration of Viscoelastically Damped Sandwich Beams
,”
J. Sound Vib.
,
271
(5–6), pp.
789
813
.
21.
Bilasse
,
M.
,
Daya
,
E. M.
, and
Azrar
,
L.
,
2010
, “
Linear and Nonlinear Vibrations Analysis of Viscoelastic Sandwich Beams
,”
J. Sound Vib.
,
329
(
23
), pp.
4950
4969
.
22.
Youzera
,
H.
,
Meftah
,
S. A.
,
Challamel
,
N.
, and
Tounsi
,
A.
,
2012
, “
Nonlinear Damping and Forced Vibration Analysis of Laminated Composite Beams
,”
Composites, Part B
,
43
(
3
), pp.
1147
1154
.
23.
Melo
,
J. D. D.
, and
Radford
,
D. W.
,
2003
, “
Viscoelastic Characterization of Transversely Isotropic Composite Laminate
,”
J. Compos. Mater.
,
37
(
2
), pp.
129
145
.
24.
Rachdaoui
,
M. S.
, and
Azrar
,
L.
,
2010
, “
Active Control of Secondary Resonances Piezoelectric Sandwich Beams
,”
Appl. Math. Comput.
,
216
(11), pp.
3283
3302
.
25.
Alhazza
,
K. A.
,
Daqaq
,
M. F.
,
Nayfeh
,
A. H.
, and
Inman
,
D. J.
,
2008
, “
Non-Linear Vibrations of Parametrically Excited Cantilever Beams Subjected to Non-Linear Delayed-Feedback Control
,”
Int. J. Non-Linear Mech.
,
43
(
8
), pp.
801
812
.
26.
Khanin
,
R.
,
Cartmell
,
M.
, and
Gilbert
,
A.
,
2000
, “
A Computerised Implementation of the Multiple Scales Perturbation Method Using Mathematica
,”
Comput. Struct.
,
76
(
5
), pp.
565
575
.
You do not currently have access to this content.