Abstract

A computational methodology for modeling spatial flexible mechanical systems with stick-slip friction in a spherical clearance joint is presented. A modified three-dimensional (3D) absolute nodal coordinate formulation based shear deformable beam element with two nodes is proposed and employed to discretize the flexible components. To avoid locking problems, we employed an enhanced continuum mechanics approach to evaluate the beam element elastic forces. The strain components εyz, εyy, and εzz are approximated using linear interpolation to improve the computational efficiency while the loss of accuracy is acceptable. The contact and friction forces in a spherical clearance joint were evaluated by the hybrid contact and LuGre friction models, respectively. Three numerical examples are presented and discussed. A simple pendulum was utilized to prove the correctness of the modified beam element. A classical slider–crank mechanism was employed to validate the computational methodology. A spatial rigid–flexible slider–crank mechanism with a spherical clearance joint was used to investigate the effect of link flexibility and joint clearance on the dynamic behavior of mechanical systems. Using the LuGre friction model, we reproduced the Stribeck effect as it is expected in real world settings. The components with appropriate stiffness play the role of suspension for spatial mechanical systems with imperfect joints. The vibrations of the flexible components play an active role of intensifying the collision in kinematic joint with clearance.

References

1.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamic Model
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
305
309
.10.1115/1.3427895
2.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 2: Dynamic Response
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
310
316
.10.1115/1.3427896
3.
Earles
,
S. W. E.
, and
Wu
,
C. L. S.
,
1973
, “
Motion Analysis of a Rigid Link Mechanism With Clearance at a Bearing Using Lagrangian Mechanics and Digital Computation
,”
J. Mech.
, pp.
83
89
.
4.
Ravn
,
P.
,
1998
, “
A Continuous Analysis Method for Planar Multibody Systems With Joint Clearance
,”
Multibody Syst. Dyn.
,
2
(
1
), pp.
1
24
.10.1023/A:1009759826529
5.
Ravn
,
P.
,
Shivaswamy
,
S.
, and
Lankarani
,
H. M.
,
1999
, “
Treatment of Lubrication in Long Bearings for Joint Clearances in Multibody Mechanical Systems
,”
ASME
Paper No. DETC99/VIB-8235.10.1115/DETC99/VIB-8235
6.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2006
, “
A Study on Dynamics of Mechanical Systems Including Joints With Clearance and Lubrication
,”
Mech. Mach. Theory
,
41
(
3
), pp.
247
261
.10.1016/j.mechmachtheory.2005.10.002
7.
Flores
,
P.
, and
Ambrósio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17–19
), pp.
1359
1369
.10.1016/j.compstruc.2004.03.031
8.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.10.1023/B:MUBO.0000042901.74498.3a
9.
Flores
,
P.
,
Koshy
,
C. S.
,
Lankarani
,
H. M.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2011
, “
Numerical and Experimental Investigation on Multibody Systems With Revolute Clearance Joints
,”
Nonlinear Dyn.
,
65
(
4
), pp.
383
398
.10.1007/s11071-010-9899-8
10.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Yang
,
J.
,
2010
, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
(
4
), pp.
489
511
.10.1007/s11071-009-9610-0
11.
Sun
,
D. Y.
,
Chen
,
G. P.
,
Wang
,
T. C.
, and
Sun
,
R. J.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.10.1115/1.4027607
12.
Khemili
,
I.
, and
Romdhane
,
L.
,
2008
, “
Dynamic Analysis of a Flexible Slider–Crank Mechanism With Clearance
,”
Eur. J. Mech. A
,
27
(
5
), pp.
882
898
.10.1016/j.euromechsol.2007.12.004
13.
Chaker
,
A.
,
Mlika
,
A.
,
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2013
, “
Clearance and Manufacturing Errors' Effects on the Accuracy of the 3-RCC Spherical Parallel Manipulator
,”
Eur. J. Mech. A
,
37
, pp.
86
95
.10.1016/j.euromechsol.2012.05.009
14.
Ambrósio
,
J.
, and
Verissimo
,
P.
,
2009
, “
Improved Bushing Models for General Multibody Systems and Vehicle Dynamics
,”
Multibody Syst. Dyn.
,
22
(
4
), pp.
341
365
.10.1007/s11044-009-9161-7
15.
Pereira
,
C.
,
Ambrósio
,
J.
, and
Ramalho
,
A.
,
2015
, “
Dynamics of Chain Drives Using a Generalized Revolute Clearance Joint Formulation
,”
Mech. Mach. Theory
,
92
, pp.
64
85
.10.1016/j.mechmachtheory.2015.04.021
16.
Dhande
,
S. G.
, and
Chakraborty
,
J.
,
1978
, “
Mechanical Error Analysis of Spatial Linkages
,”
ASME J. Mech. Des.
,
100
(
4
), pp.
732
738
.10.1115/1.3454001
17.
Kakizaki
,
T.
,
Deck
,
J. F.
, and
Dubowsky
,
S.
,
1993
, “
Modeling the Spatial Dynamics of Robotic Manipulators With Flexible Links and Joint Clearances
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
839
847
.10.1115/1.2919277
18.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.10.1115/1.2198877
19.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.10.1007/s11071-009-9583-z
20.
Brutti
,
C.
,
Coglitore
,
G.
, and
Valentini
,
P. P.
,
2011
, “
Modeling 3D Revolute Joint With Clearance and Contact Stiffness
,”
Nonlinear Dyn.
,
66
(
4
), pp.
531
548
.10.1007/s11071-010-9931-z
21.
Tian
,
Q.
,
Sun
,
Y. L.
,
Liu
,
C.
,
Hu
,
H. Y.
, and
Flores
,
P.
,
2013
, “
ElastoHydroDynamic Lubricated Cylindrical Joints for Rigid-Flexible Multibody Dynamics
,”
Comput. Struct.
,
114–115
, pp.
106
120
.10.1016/j.compstruc.2012.10.019
22.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
,
2011
, “
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
,
64
(
1–2
), pp.
25
47
.10.1007/s11071-010-9843-y
23.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.10.1016/j.compstruc.2009.03.006
24.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2012
, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints
,”
Mech. Mach. Theory
,
52
, pp.
106
129
.10.1016/j.mechmachtheory.2012.01.016
25.
Akhadkar
,
N.
,
Acary
,
V.
, and
Brogliato
,
B.
,
2018
, “
Multibody Systems With 3D Revolute Joints With Clearances: An Industrial Case Study With an Experimental Validation
,”
Multibody Syst. Dyn.
,
42
(
3
), pp.
249
282
.10.1007/s11044-017-9584-5
26.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
, and
Flores
,
P.
,
2017
, “
An Enhanced Formulation to Model Spatial Revolute Joints With Radial and Axial Clearances
,”
Mech. Mach. Theory
,
116
, pp.
123
144
.10.1016/j.mechmachtheory.2017.05.020
27.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Analysis of Planar Multibody Systems With Revolute Joint Wear
,”
Wear
,
268
(
5–6
), pp.
643
652
.10.1016/j.wear.2009.10.014
28.
Chunmei
,
J.
,
Yang
,
Q.
,
Ling
,
F.
, and
Ling
,
Z.
,
2002
, “
The Non-Linear Dynamic Behavior of an Elastic Linkage Mechanism With Clearances
,”
J. Sound Vib.
,
249
(
2
), pp.
213
226
.10.1006/jsvi.2001.3771
29.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
,
W.
Schiehlen
, and
M.
Valásek
, eds.,
NATO, Advanced Study Institute
,
Kluwer Academic Publishers, Dordrecht, The Netherlands
, pp.
57
81
.
30.
Olsson
,
H.
,
Åström
,
K. J.
,
Canudas de Wit
,
C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
31.
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Multibody Dynamics Simulation of Planar Linkages With Dahl Friction
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
321
347
.10.1007/s11044-007-9047-5
32.
Bauchau
,
O.
, and
Ju
,
C.
,
2006
, “
Modeling Friction Phenomena in Flexible Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
50–51
), pp.
6909
6924
.10.1016/j.cma.2005.08.013
33.
Zhang
,
J.
, and
Wang
,
Q.
,
2016
, “
Modeling and Simulation of a Frictional Translational Joint With a Flexible Slider and Clearance
,”
Multibody Syst. Dyn.
,
38
(
4
), pp.
367
389
.10.1007/s11044-015-9474-7
34.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2014
, “
Computational Implementation of LuGre Friction Law in a Revolute Joint With Clearance
,”
Sustainable Research and Innovation Conference
, May 3–4, pp.
99
108
.
35.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
36.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.10.1115/1.1410099
37.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2012
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021004
.10.1115/1.4006787
38.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2006
, “
Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach
,”
Nonlinear Dyn.
,
43
(
4
), pp.
311
327
.10.1007/s11071-006-8326-7
39.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
40.
Tan
,
X.
,
Chen
,
G. P.
,
Sun
,
D. Y.
, and
Chen
,
Y.
,
2018
, “
Dynamic Analysis of Planar Mechanical Systems With Clearance Joint Based on LuGre Friction Model
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
6
), p.
061003
.10.1115/1.4039877
41.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.10.1007/s11071-015-2485-3
42.
Keller
,
J. B.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
4
.10.1115/1.3171712
43.
Canudas de Wit
,
C.
, and
Tsiotras
,
P.
,
2002
, “
Dynamic Tire Friction Models for Vehicle Traction Control
,”
38th IEEE Conference on Decision & Control
,
Phoenix, AZ
,
Dec. 7–10
, pp.
3746
3751
.
44.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
45.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
, 2nd ed.,
Wiley
,
New York
.
46.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
47.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2012
, “
Dynamic Behaviour Analysis of Planar Mechanical Systems With Clearance in Revolute Joints Using a New Hybrid Contact Force Model
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
190
205
.10.1016/j.ijmecsci.2011.10.009
48.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
49.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
50.
Bottasso
,
C. L.
,
Dopico
,
D.
, and
Trainelli
,
L.
,
2008
, “
On the Optimal Scaling of Index Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
3
20
.10.1007/s11044-007-9051-9
51.
Nakashima
,
A.
,
Ooka
,
Y.
, and
Hayakawa
,
Y.
,
2015
, “
Contact Transition Modelling on Planar Manipulation System With LuGre Friction Model
,”
Tenth International Workshop on Robot Motion and Control
, Poznan, Poland, July 6–8, pp.
300
307.
10.1109/RoMoCo.2015.7219751
You do not currently have access to this content.