Abstract

In this paper, global dynamics of the Maxwell–Bloch system is discussed. First, the complete description of its dynamic behavior on the sphere at infinity is presented by using the Poincaré compactification in R3. Second, the existence of singularly degenerate heteroclinic cycles is investigated. It is proved that for a suitable choice of the parameters, there is an infinite set of singularly degenerate heteroclinic cycles in Maxwell–Bloch system. Specially, the chaotic attractors are found nearby singularly degenerate heteroclinic cycles in Maxwell–Bloch system by combining theoretical and numerical analyses for a special parameter value. It is hoped that these theoretical and numerical value results are given a contribution in an understanding of the physical essence for chaos in the Maxwell–Bloch system.

References

1.
Harrison
,
R. G.
, and
Biswas
,
D. J.
,
1985
, “
Pulsating Instabilities and Chaos in Lasers
,”
Prog. Quantum Electron.
,
10
(
3
), pp.
147
228
.10.1016/0079-6727(85)90005-9
2.
New
,
G. H. C.
,
1995
, “
Dynamics of Lasers
,”
J. Mod. Opt.
,
42
(
4
), pp.
937
937
.10.1080/716099842a
3.
Gaponov-Grekhov
,
A. V.
, and
Ραβινoϖιχη
,
M. I.
,
1989
,
Nonlinear Waves 1: Dynamics and Evolution
,
Springer–Verlag
,
New York
.
4.
Dicke
,
R. H.
,
1954
, “
Coherence in Spontaneous Radiation Processes
,”
Phys. Rev.
,
93
(
1
), pp.
99
110
.10.1103/PhysRev.93.99
5.
Arecchi
,
F. T.
, and
Courtens
,
E.
,
1970
, “
Cooperative Phenomena in Resonant Electromagnetic Propagation
,”
Phys. Rev. A
,
2
(
5
), pp.
1730
1737
.10.1103/PhysRevA.2.1730
6.
Sun
,
L. C.
, and
Wu
,
Z.
,
2013
, “
Simplification of the Maxwell–Bloch Equation of Standing Wave Lasers
,”
Adv. Mater. Res.
,
760–762
, pp.
8
14
.10.4028/www.scientific.net/AMR.760-762.8
7.
Arecchi
,
F.
, and
Bonifacio
,
R.
,
1965
, “
Theory of Optical Maser Amplifiers
,”
IEEE J. Quantum Electron.
,
1
(
4
), pp.
169
178
.10.1109/JQE.1965.1072212
8.
Arecchi
,
F. T.
,
1985
, “
Chaos and Generalized Multistability in Quantum Optics
,”
Phys. Scr.
,
T9
, pp.
85
92
.10.1088/0031-8949/1985/T9/013
9.
Candido
,
M. R.
,
Llibre
,
J.
, and
Valls
,
C.
,
2019
, “
New Symmetric Periodic Solutions for the Maxwell–Bloch Differential System
,”
Math. Phys. Anal. Geom.
,
22
(
2
), pp.
1
13
.10.1007/s11040-019-9313-9
10.
Wei
,
J.
,
Wang
,
X.
, and
Geng
,
X.
,
2018
, “
Periodic and Rational Solutions of the Reduced Maxwell–Bloch Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
1
14
.10.1016/j.cnsns.2017.10.017
11.
Manassah
,
J. T.
,
2015
, “
Numerical Demonstration of High Sensitivity to Initial Conditions in Solutions of the Complete Maxwell–Bloch Equations for Certain Parameters
,”
Phys. Lett. A
,
379
(
16–17
), pp.
1091
1096
.10.1016/j.physleta.2015.02.008
12.
Zuo
,
D.
,
2018
, “
Modulation Instability and Breathers Synchronization of the Nonlinear Schrödinger Maxwell–Bloch Equation
,”
Appl. Math. Lett.
,
79
, pp.
182
186
.10.1016/j.aml.2017.12.019
13.
Hacinliyan
,
A.
,
Kusbeyzi
,
I.
, and
Aybar
,
O. O.
,
2010
, “
Approximate Solutions of Maxwell–Bloch Equations and Possible Lotka–Volterra Type Behavior
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
17
26
.10.1007/s11071-010-9695-5
14.
Lazureanu
,
C.
,
2017
, “
The Real–Valued Maxwell–Bloch Equations With Controls: From a Hamilton–Poisson System to a Chaotic One
,”
Int. J. Bifurcation Chaos
,
27
(
09
), p.
1750143
.10.1142/S0218127417501437
15.
Puta
,
M.
,
1996
, “
Three–Dimensional Real–Valued Maxwell–Bloch Equations With Controls
,”
Rep. Math. Phys.
,
37
(
3
), pp.
337
348
.10.1016/0034-4877(96)84072-9
16.
Puta
,
M.
,
2000
, “
Maxwell–Bloch Equations With One Control and Stability Problem
,”
Bull. Des Sci. Math.
,
124
(
4
), pp.
333
338
.10.1016/S0007-4497(00)00133-0
17.
Lazureanu
,
C.
,
2017
, “
On a Hamilton–Poisson Approach of the Maxwell–Bloch Equations With a Control
,”
Math. Phys. Anal. Geom.
,
20
(
3
), p.
20
.10.1007/s11040-017-9251-3
18.
Liu
,
L.
,
Aybar
,
O. O.
,
Romanovski
,
V. G.
, and
Zhang
,
W.
,
2015
, “
Identifying Weak Foci and Centers in the Maxwell–Bloch System
,”
J. Math. Anal. Appl.
,
430
(
1
), pp.
549
571
.10.1016/j.jmaa.2015.05.007
19.
Cima
,
A.
, and
Llibre
,
J.
,
1990
, “
Bounded Polynomial Vector Fields
,”
Trans. Am. Math. Soc.
,
318
(
2
), pp.
557
579
.10.1090/S0002-9947-1990-0998352-5
20.
Llibre
,
J.
, and
Messias
,
M.
,
2009
, “
Global Dynamics of the Rikitake System
,”
Phys. D Nonlinear Phenom.
,
238
(
3
), pp.
241
252
.10.1016/j.physd.2008.10.011
21.
Messias
,
M.
,
2009
, “
Dynamics at Infinity and the Existence of Singularly Degenerate Heteroclinic Cycles in the Lorenz System
,”
J. Phys. A
,
42
(
11
), p.
115101
.10.1088/1751-8113/42/11/115101
22.
Liu
,
Y.
,
2012
, “
Dynamics at Infinity and the Existence of Singularly Degenerate Heteroclinic Cycles in the Conjugate Lorenz–Type System
,”
Nonlinear Anal.-Real World Appl.
,
13
(
6
), pp.
2466
2475
.10.1016/j.nonrwa.2012.02.011
23.
Llibre
,
J.
,
Messias
,
M.
, and
Silva
,
P. R. D.
,
2012
, “
Global Dynamics in the Poincare Ball of the Chen System Having Invariant Algebraic Surfaces
,”
Int. J. Bifurcation Chaos
,
22
(
06
), p.
1250154
.10.1142/S0218127412501544
24.
Messias
,
M.
,
Gouveia
,
M. R. A.
, and
Pessoa
,
C.
,
2012
, “
Dynamics at Infinity and Other Global Dynamical Aspects of Shimizu–Morioka Equations
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
577
587
.10.1007/s11071-011-0288-8
25.
Wang
,
Z.
,
Moroz
,
I. M.
,
Wei
,
Z.
, and
Ren
,
H.
,
2018
, “
Dynamics at Infinity and a Hopf Bifurcation Arising in a Quadratic System With Coexisting Attractors
,”
Pramana
,
90
(
1
), p.
12
.10.1007/s12043-017-1505-x
26.
Wei
,
Z.
,
Moroz
,
I. M.
,
Wang
,
Z.
,
Sprott
,
J. C.
, and
Kapitaniak
,
T.
,
2016
, “
Dynamics at Infinity, Degenerate Hopf and Zero–Hopf Bifurcation for Kingni–Jafari System With Hidden Attractors
,”
Int. J. Bifurcation Chaos
,
26
(
07
), p.
1650125
.10.1142/S021812741650125X
27.
Messias
,
M.
,
2011
, “
Dynamics at Infinity of a Cubic Chua's System
,”
Int. J. Bifurcation Chaos
,
21
(
01
), pp.
333
340
.10.1142/S0218127411028453
28.
Llibre
,
J.
,
Messias
,
M.
, and
Silva
,
P. R. D.
,
2008
, “
On the Global Dynamics of the Rabinovich System
,”
J. Phys. A
,
41
(
27
), p.
275210
.10.1088/1751-8113/41/27/275210
29.
Wei
,
Z.
,
Moroz
,
I. M.
,
Sprott
,
J. C.
,
Wang
,
Z.
, and
Zhang
,
W.
,
2017
, “
Detecting Hidden Chaotic Regions and Complex Dynamics in the Self–Exciting Homopolar Disc Dynamo
,”
Int. J. Bifurcation Chaos
,
27
(
02
), p.
1730008
.10.1142/S0218127417300087
30.
Liu
,
Y.
, and
Pang
,
W.
,
2012
, “
Dynamics of the General Lorenz Family
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1595
1611
.10.1007/s11071-011-0090-7
31.
Liu
,
Y.
, and
Yang
,
Q.
,
2010
, “
Dynamics of a New Lorenz–Like Chaotic System
,”
Nonlinear Anal.-Real World Appl.
,
11
(
4
), pp.
2563
2572
.10.1016/j.nonrwa.2009.09.001
32.
Wei
,
Z.
, and
Yang
,
Q.
,
2011
, “
Dynamical Analysis of a New Autonomous 3–d Chaotic System Only With Stable Equilibria
,”
Nonlinear Anal.-Real World Appl.
,
12
(
1
), pp.
106
118
.10.1016/j.nonrwa.2010.05.038
33.
Yang
,
Q.
,
Wei
,
Z.
, and
Chen
,
G.
,
2010
, “
An Unusual 3d Autonomous Quadratic Chaotic System With Two Stable Node–Foci
,”
Int. J. Bifurcation Chaos
,
20
(
04
), pp.
1061
1083
.10.1142/S0218127410026320
34.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1990
, “
Motion Near a Hopf Bifurcation of a Three–Dimensional System
,”
Mech. Res. Commun.
,
17
(
4
), pp.
191
198
.10.1016/0093-6413(90)90078-Q
35.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1992
, “
Cyclic Motions Near a Hopf Bifurcation of a Four–Dimensional System
,”
Nonlinear Dyn.
,
3
(
1
), pp.
19
39
.10.1007/BF00045469
36.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
37.
Zhang
,
Z. F.
, Ding, T. R., Huang, W. Z., and Dong, Z. X.,
1985
,
Qualitative Theory of Differential Equations
,
Science Press
,
Beijing, China
.
38.
Kokubu
,
H.
, and
Roussarie
,
R.
,
2004
, “
Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I
,”
J. Dyn. Differ. Equations
,
16
(
2
), pp.
513
557
.10.1007/s10884-004-4290-4
39.
Laurent
,
M.
, and
Kellershohn
,
N.
,
1999
, “
Multistability: A Major Means of Differentiation and Evolution in Biological Systems
,”
Trends Biochem. Sci.
,
24
(
11
), pp.
418
422
.10.1016/S0968-0004(99)01473-5
40.
Zeng
,
Z.
,
Huang
,
T.
, and
Zheng
,
W. X.
,
2010
, “
Multistability of Recurrent Neural Networks With Time–Varying Delays and the Piecewise Linear Activation Function
,”
IEEE Trans. Neural Networks
,
21
(
8
), pp.
1371
1377
.10.1109/TNN.2010.2054106
41.
Robinson
,
A.
,
Calov
,
R.
, and
Ganopolski
,
A.
,
2012
, “
Multistability and Critical Thresholds of the Greenland Ice Sheet
,”
Nat. Clim. Change
,
2
(
6
), pp.
429
432
.10.1038/nclimate1449
42.
Li
,
C.
, and
Sprott
,
J. C.
,
2014
, “
Multistability in the Lorenz System: A Broken Butterfly
,”
Int. J. Bifurcation Chaos
,
24
(
10
), p.
1450131
.10.1142/S0218127414501314
43.
Yuan
,
F.
,
Wang
,
G.
, and
Wang
,
X.
,
2016
, “
Extreme Multistability in a Memristor–Based Multi–Scroll Hyper–Chaotic System
,”
Chaos
,
26
(
7
), p.
073107
.10.1063/1.4958296
44.
Li
,
C.
,
Min
,
F.
,
Jin
,
Q.
, and
Ma
,
H.
,
2017
, “
Extreme Multistability Analysis of Memristor–Based Chaotic System and Its Application in Image Decryption
,”
AIP Adv.
,
7
(
12
), p.
125204
.10.1063/1.5006593
45.
Bao
,
B.
,
Li
,
Q.
,
Wang
,
N.
, and
Xu
,
Q.
,
2016
, “
Multistability in Chua's Circuit With Two Stable Node–Foci
,”
Chaos
,
26
(
4
), p.
043111
.10.1063/1.4946813
46.
Chen
,
M.
,
Xu
,
Q.
,
Lin
,
Y.
, and
Bao
,
B.
,
2017
, “
Multistability Induced by Two Symmetric Stable Node–Foci in Modified Canonical Chua's Circuit
,”
Nonlinear Dyn.
,
87
(
2
), pp.
789
802
.10.1007/s11071-016-3077-6
47.
Rajagopal
,
K.
,
Duraisamy
,
P.
,
Weldegiorgis
,
R.
, and
Karthikeyan
,
A.
,
2018
, “
Multistability in Horizontal Platform System With and Without Time Delays
,”
Shock Vib.
,
2018
, pp.
1
8
.10.1155/2018/1092812
48.
Li
,
C.
,
Sprott
,
J. C.
,
Liu
,
Y.
,
Gu
,
Z.
, and
Zhang
,
J.
,
2018
, “
Offset Boosting for Breeding Conditional Symmetry
,”
Int. J. Bifurcation Chaos
,
28
(
14
), p.
1850163
.10.1142/S0218127418501638
You do not currently have access to this content.