Abstract

Model reduction via projection is a common method to accelerate time integration of finite element (FE) structures by reducing the number of degrees-of-freedom (DOFs). However, nonlinear state-dependent surface loads are usually computed based on the nonreduced DOFs of the FE model. When a considerably high number of DOFs are involved in the nonlinear surface loads, their computation becomes a bottleneck. This paper presents a general approach for reduced time integration and reduced force computation for FE models. The required force trial vectors can be computed easily and systematically out of deformation trial vectors, commonly called “modes.” Those force trial vectors, which we call “stress modes,” can be determined a priori so that a nonlinear computation of the full system is not necessary. The new idea in this contribution is that stress recovery is used to decrease the number of equations for the force computation. A general framework for semihyper-reduction (SHR) is developed and its practical implementation is discussed. The term SHR is introduced because it is an intermediate approach between the straight-forward method of using the FE DOFs and pure hyper-reduction (HR) where the FE DOFs are omitted for computing state-depended surface loads. In order to demonstrate the proposed SHR approach practically, a numerical example of a planar crank drive is given, where a hydrodynamic lubrication film separates piston and cylinder. Thereby, very good result quality has been observed in comparison to a finite difference reference solution.

References

1.
Craig
,
R.
,
Bampton
,
R.
, and
Mervyn
,
C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
2.
Noor
,
A. K.
,
1994
, “
Recent Advances and Applications of Reduction Methods
,”
ASME Appl. Mech. Rev
,
47
(
5
), pp.
125
146
.10.1115/1.3111075
3.
Qu
,
Z.
,
2004
,
Model Order Reduction Techniques: With Applications in Finite Element Analysis
,
Springer
,
London
.
4.
Barrault
,
M.
,
Maday
,
Y.
,
Nguyen
,
N. C.
, and
Patera
,
A. A.
,
2004
, “
Empirical Interpolation' Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations
,”
C. R. Math.
,
339
(
9
), pp.
667
672
.10.1016/j.crma.2004.08.006
5.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.10.1137/090766498
6.
Farhat
,
C.
,
Avery
,
P.
,
Chapman
,
T.
, and
Cortial
,
J.
,
2014
, “
Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy-Based Mesh Sampling and Weighting for Computational Efficiency
,”
Int. J. Numer. Meth. Eng.
,
98
(
9
), pp.
625
662
.10.1002/nme.4668
7.
Lerch
,
C.
, and
Meyer
,
C. H.
,
2017
, “
Modellordnungsreduktion Für Parametrische Nichtlineare Mechanische Systeme Mittels Erweiterter Simulationsfreier Basen Und Hyperreduktion: 6
,”
Methoden Und Anwendungen Der Regelungstechnik
,
B.
Lohmann
, and
G.
Roppenecker
, eds., 1st ed.,
Shaker Verlag
,
Aachen, Germany
, pp.
67
86
.
8.
Euler-Rolle
,
N.
,
Jakubek
,
S.
, and
Offner
,
G.
,
2014
, “
Model Order Reduction by Projection Applied to the Universal Reynolds Equation
,”
Math. Comput. Modell. Dyn. Syst.
,
20
(
4
), pp.
374
394
.10.1080/13873954.2013.838587
9.
Rutzmoser
,
J. B.
, and
Rixen
,
D. J.
,
2017
, “
A Lean and Efficient Snapshot Generation Technique for the Hyper-Reduction of Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
330
349
.10.1016/j.cma.2017.06.009
10.
Witteveen
,
W.
,
2011
, “
Computation of Distributed Forces in Modally Reduced Mechanical Systems
,”
Structural Dynamics
, Vol.
3
,
T.
Proulx
, ed.,
Springer
,
New York
, pp.
627
635
.
11.
Hernández
,
J. A.
,
Oliver
,
J.
,
Huespe
,
A. E.
,
Caicedo
,
M. A.
, and
Cante
,
J. C.
,
2014
, “
High-Performance Model Reduction Techniques in Computational Multiscale Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
149
189
.10.1016/j.cma.2014.03.011
12.
Sherif
,
K.
, and
Witteveen
,
W.
,
2014
, “
Deformation Mode Selection and Orthonormalization for an Efficient Simulation of the Rolling Contact Problem
,”
Dynamics of Coupled Structures
, Vol.
1
,
M.
Allen
,
R.
Mayes
, and
D.
Rixen
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
125
134
.
13.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
A Complete Strategy for Efficient and Accurate Multibody Dynamics of Flexible Structures With Large Lap Joints Considering Contact and Friction
,”
Multibody Syst. Dyn.
,
40
(
4
), pp.
407
436
.10.1007/s11044-016-9555-2
14.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
Reduced-Order Modeling of Preloaded Bolted Structures in Multibody Systems by the Use of Trial Vector Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051032
.10.1115/1.4036989
15.
Fischer
,
P.
,
Witteveen
,
W.
, and
Schabasser
,
M.
,
2000
, “
Integrated MBS-FE-Durability Analysis of Truck Frame Components by Modal Stresses
,”
ADAMS User Meeting
, Rome, Italy, Nov. 15–17.
16.
Schwertassek
,
R.
,
Dombrowski
,
S. V.
, and
Wallrapp
,
O.
,
1999
, “
Modal Representation of Stress in Flexible Multibody Simulation
,”
Nonlinear Dyn.
,
20
(
4
), pp.
381
399
.10.1023/A:1008322210909
17.
Sherif
,
K.
,
2012
, “
Novel Computationally Efficient Formulations for the Equations of Motion of a Modally Reduced Flexible Member Undergoing Large Rigid Body Motion
,” Ph.D. thesis, Johannes Kepler University, Institute of Technical Mechanics, Linz, Austria.
18.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
(
2
), pp.
1
16
.10.1155/2014/913136
19.
Volkwein
,
S.
,
2013
, “
Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture Notes
,” University of Konstanz, Germany, accessed May 10, 2019, www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
20.
Simulia,
2015
, “ABAQUS/Standard User's Manual, Version 2016,” Simulia.
21.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On an Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics (DETC2005-85096)
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.10.1115/1.2389231
22.
Scilab Enterprises (Scilab)
, 2019, “
Free and Open Source Software for Numerical Computation (Version 5.5.2)
,” Orsay, France, accessed May 10, 2019, http://www.scilab.org
23.
Bartel
,
D.
,
2010
,
Simulation Von Tribosystemen: Grundlagen Und Anwendungen
,
Vieweg+Teubner Verlag/GWV Fachverlage GmbH Wiesbaden
,
Wiesbaden, Germany
.
24.
Gümbel
,
L.
, and
Everling
,
E. A.
,
1925
, “Reibung und Schmierung im Maschinenbau,” M. Krayn, Berlin, Germany.
You do not currently have access to this content.