Abstract

In the last years, the research on unmanned aerial systems (UASs) has shown a marked growth and the models to simulate UASs have been deeply studied. Although onboard controller algorithms have increased their complexity, most of them still rely on simplistic models. In essence, aerodynamic forces/torques are generally considered either insignificant compared to propulsion and inertial forces or acceptably modeled with constant aerodynamic coefficients estimated in a particular flight regime. However, the increase of power in the onboard computers allows to make controller algorithms more complex, and therefore, to increase the total performance of the UAS. In this regard, this work provides an explicit aerodynamic model for multirotor UAS that, unlike most of the current models, does not need iterations to be adjusted to the flight conditions at a higher computational cost. This explicit nature makes it an excellent choice for being implemented in onboard computers, thus covering a broad range of applications, from controller design to numerical analysis (e.g., the capture nonlinear phenomena like bifurcations). To obtain this accurate explicit mathematical aerodynamic model, a thorough analysis of a batch of simulations is carried out. In these simulations, the aerodynamic forces and torques are estimated using computer fluid dynamics (CFD), and the propulsive effects are taken into account via blade element momentum theory (BEMT). A study of its implementation for different regimes and platforms is also provided, as well as some potential applications of the solution, like robust control strategies or machine learning.

References

1.
Ollero
,
A.
,
Heredia
,
G.
,
Franchi
,
A.
,
Antonelli
,
G.
,
Kondak
,
K.
,
Sanfeliu
,
A.
,
Viguria
,
A.
,
Martinez-de Dios
,
J. R.
,
Pierri
,
F.
,
Cortes
,
J.
,
Santamaria-Navarro
,
A.
,
Trujillo Soto
,
M. A.
,
Balachandran
,
R.
,
Andrade-Cetto
,
J.
, and
Rodriguez
,
A.
,
2018
, “
The Aeroarms Project: Aerial Robots With Advanced Manipulation Capabilities for Inspection and Maintenance
,”
IEEE Rob. Autom. Mag.
,
25
(
4
), pp.
12
23
.10.1109/MRA.2018.2852789
2.
Dixon
,
S. R.
, and
Wickens
,
C. D.
,
2006
, “
Automation Reliability in Unmanned Aerial Vehicle Control: A Reliance-Compliance Model of Automation Dependence in High Workload
,”
Human Factors
,
48
(
3
), pp.
474
486
.10.1518/001872006778606822
3.
Achtelik
,
M.
,
Doth
,
K.-M.
,
Gurdan
,
D.
, and
Stumpf
,
J.
,
2012
, “
Design of a multi rotor Mav With Regard to Efficiency, Dynamics and Redundancy
,”
AIAA
Paper No. 2012-4779
.10.2514/6.2012-4779
4.
Fotouhi
,
A.
,
Ding
,
M.
, and
Hassan
,
M.
,
2017
, “
Understanding Autonomous Drone Maneuverability for Internet of Things Applications
,”
IEEE 18th International Symposium on a World of Wireless, Mobile and Multimedia Networks
(
WoWMoM
), Macau, China, June 12–15, pp.
1
6
.10.1109/WoWMoM.2017.7974336
5.
de Cos
,
C.
,
Acosta
,
J.
, and
Ollero
,
A.
,
2017
, “
Command-Filtered Backstepping Redesign for Aerial Manipulators Under Aerodynamic and Operational Disturbances
,”
ROBOT 17—Third Iberian Robotics Conference
, Seville, Spain.https://www.researchgate.net/publication/321019550_Command-Filtered_Backstepping_Redesign_for_Aerial_Manipulators_Under_Aerodynamic_and_Operational_Disturbances
6.
Ruggiero
,
F.
,
Trujillo
,
M. A.
,
Cano
,
R.
,
Ascorbe
,
H.
,
Viguria
,
A.
,
Peréz
,
C.
,
Lippiello
,
V.
,
Ollero
,
A.
, and
Siciliano
,
B.
,
2015
, “
A Multilayer Control for Multirotor UAVs Equipped With a Servo Robot Arm
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
4014
4020
.10.1109/ICRA.2015.7139760
7.
Li
,
X.
,
Zhao
,
B.
,
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Y.
,
2018
, “
Stability and Performance Analysis of Six-Rotor Unmanned Aerial Vehicles in Wind Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031005
.10.1115/1.4038776
8.
Madani
,
T.
, and
Benallegue
,
A.
,
2007
, “
Sliding Mode Observer and Backstepping Control for a Quadrotor Unmanned Aerial Vehicles
,”
American Control Conference
, New York, July 9–13, pp.
5887
5892
.10.1109/ACC.2007.4282548
9.
Yang
,
H.
, and
Lee
,
D.
,
2014
, “
Dynamics and Control of Quadrotor With Robotic Manipulator
,”
IEEE
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
5544
5549
.10.1109/ICRA.2014.6907674
10.
Acosta
,
J.
,
Sánchez
,
M. I.
, and
Ollero
,
A.
,
2014
, “
Robust Control of Underactuated Aerial Manipulators Via IDA-PBC
,”
2014 IEEE 53rd Annual Conference on Decision and Control
(
CDC
), Los Angeles, CA, Dec. 15–17, pp.
673
678
.10.1109/CDC.2014.7039459
11.
Mahony
,
R.
,
Stramigioli
,
S.
, and
Trumpf
,
J.
,
2011
, “
Vision Based Control of Aerial Robotic Vehicles Using the Port Hamiltonian Framework
,”
IEEE
Conference on Decision Control and European Control Conference
, Orlando, FL, Dec. 12–15, pp.
3526
3532
.10.1109/CDC.2011.6160558
12.
Hoffmann
,
G.
,
Huang
,
H.
,
Waslander
,
S.
, and
Tomlin
,
C.
,
2011
, “
Precision Flight Control for a Multi-Vehicle Quadrotor Helicopter Testbed
,”
Control Eng. Pract.
,
19
(
9
), pp.
1023
1036
.10.1016/j.conengprac.2011.04.005
13.
Dong
,
W.
,
Gu
,
G.
,
Zhu
,
X.
, and
Ding
,
H.
,
2013
, “
Modeling and Control of a Quadrotor UAV With Aerodynamic Concepts
,”
World Acad. Sci., Eng. Technol.
,
7
(
5
), pp.
901
906
.
14.
Sandu
,
C.
, and
Mukherjee
,
R.
,
2015
, “
Special Issue: Multibody Dynamics for Vehicle Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
030301
.10.1115/1.4029693
15.
Bottasso
,
C. L.
,
Luraghi
,
F.
,
Maffezzoli
,
A.
, and
Maisano
,
G.
,
2010
, “
Parameter Estimation of Multibody Models of Unstable Systems From Experimental Data, With Application to Rotorcraft Vehicles
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031010
.10.1115/1.4001390
16.
White
,
F.
,
2011
,
Fluid Mechanics
,
McGraw-Hill
, New York.
17.
Seddon
,
J.
,
2001
,
Basic Helicopter Aerodynamics
(AIAA Education Series),
American Institute of Aeronautics and Astronautics
, Reston, VA.
18.
Shen
,
J.
,
Su
,
Y.
,
Liang
,
Q.
, and
Zhu
,
X.
,
2018
, “
Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs
,”
Sensors
,
18
(
2
), p.
206
.10.3390/s18010206
19.
Kuitche
,
M.
, and
Botez
,
R.
,
2017
, “
Methodology of Estimation of Aerodynamic Coefficients of the UAS-e4 Ehécatl Using Datcom and Vlm Procedure
,”
AIAA
Paper No. 2017-3152.
10.2514/6.2017-3152
20.
Ferreira
,
B.
,
Pinto
,
M.
,
Matos
,
A.
, and
Cruz
,
N.
,
2009
, “
Hydrodynamic Modeling and Motion Limits of AUV Mares
,”
35th Annual Conference of IEEE Industrial Electronics
, Porto, Portugal, Nov. 3–5, pp.
2241
2246
.10.1109/IECON.2009.5415198
21.
Liang
,
X.
,
Li
,
Y.
,
Peng
,
Z.
, and
Zhang
,
J.
,
2016
, “
Nonlinear Dynamics Modeling and Performance Prediction for Underactuated AUV With Fins
,”
Nonlinear Dyn.
,
84
(
1
), pp.
237
249
.10.1007/s11071-015-2442-1
22.
Alarçin
,
F.
,
2014
, “
Nonlinear Modelling of a Fishing Boat and Fuzzy Logic Control Design for Electro-Hydraulic Fin Stabilizer System
,”
Nonlinear Dyn.
,
76
(
1
), pp.
581
590
.10.1007/s11071-013-1152-9
23.
Li
,
B.
, and
Su
,
T.-C.
,
2017
, “
Heading Autopilot of Autonomous Underwater Vehicles With Internal Moving Mass
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021003
.10.1115/1.4034727
24.
Imtiaz
,
H.
, and
Akhtar
,
I.
,
2020
, “
Nonlinear Closure Modeling in Reduced Order Models for Turbulent Flows: A Dynamical System Approach
,”
Nonlinear Dyn.
,
99
(
1
), pp.
479
494
.10.1007/s11071-019-05087-2
25.
Alléon
,
G.
,
Champagneux
,
S.
,
Chevalier
,
G.
,
Giraud
,
L.
, and
Sylvand
,
G.
,
2006
, “
Parallel Distributed Numerical Simulations in Aeronautic Applications
,”
Appl. Math. Modell.
,
30
(
8
), pp.
714
730
.10.1016/j.apm.2005.06.014
26.
Buckingham
,
E.
,
1915
, “
The Principle of Similitude
,”
Nature
,
96
(
2406
), pp.
396
397
.10.1038/096396d0
27.
Malki
,
R.
,
Williams
,
A.
,
Croft
,
T.
,
Togneri
,
M.
, and
Masters
,
I.
,
2013
, “
A Coupled Blade Element Momentum—Computational Fluid Dynamics Model for Evaluating Tidal Stream Turbine Performance
,”
Appl. Math. Modell.
,
37
(
5
), pp.
3006
3020
.10.1016/j.apm.2012.07.025
28.
Masters
,
I.
,
Malki
,
R.
,
Williams
,
A. J.
, and
Croft
,
T. N.
,
2013
, “
The Influence of Flow Acceleration on Tidal Stream Turbine Wake Dynamics: A Numerical Study Using a Coupled Bem-CFD Model
,”
Appl. Math. Modell.
,
37
(
16–17
), pp.
7905
7918
.10.1016/j.apm.2013.06.004
29.
de Cos
,
C. R.
,
2015
, “
Modelo de la Aerodinámica Estacionaria de un Quadrotor Mediante CFD
,” Master's thesis, Escuela Técnica Superior de Ingeniería,
Universidad de Sevilla, Seville, Spain
.
30.
Bramwell
,
A.
,
Balmford
,
D.
, and
Done
,
G.
,
2001
,
Bramwell's Helicopter Dynamics
,
American Institute of Aeronautics and Astronautics/Butterworth-Heinemann, Reston, VA/Oxford, UK.
31.
Glauert
,
H.
,
1935
,
Airplane Propellers
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
169
360
.
32.
Neumark
,
S.
,
1965
, “
Chapter 3—Quartic Equation
,”
Solution of Cubic and Quartic Equations
,
S.
Neumark
, ed.,
Pergamon
, Oxford, UK, pp.
12
24
.
33.
Johnson
,
W.
,
2012
, “
Helicopter Theory
,”
Dover Books on Aeronautical Engineering
,
Dover Publications
, New York.
34.
Leishman
,
G.
,
2006
,
Principles of Helicopter Aerodynamics With CD Extra
(Cambridge Aerospace Series),
Cambridge University Press
,
Cambridge, UK
.
35.
De Simone
,
M.
,
Russo
,
S.
, and
Ruggiero
,
A.
,
2015
, “
Influence of Aerodynamics on Quadrotor Dynamics
,”
Sixth International Conference on Theoretical and Applied Mechanics
(
TAM ‘15
), Vietri sul Mare, Italy, pp.
111
118
.https://www.researchgate.net/publication/281589398_Influence_of_Aerodynamics_on_Quadrotor_Dynamics
36.
Zhang
,
X.
,
Li
,
X.
,
Wang
,
K.
, and
Lu
,
Y.
,
2014
, “
A Survey of Modelling and Identification of Quadrotor Robot
,”
Abstract and Applied Analysis
,
Hindawi Publishing Corporation
, New York.
37.
Tran
,
N.
,
Bulka
,
E.
, and
Nahon
,
M.
,
2015
, “
Quadrotor Control in a Wind Field
,”
IEEE International Conference on Unmanned Aircraft Systems
(
ICUAS
), Denver, CO, June 9–12, pp.
320
328
.10.1109/ICUAS.2015.7152306
38.
Brown
,
R.
, and
H.W
,
K.
,
2010
, “
A Comparison of Coaxial and Conventional Rotor Performance
,”
J. Am. Helicopter Soc.
,
55
(
1
), p.
1200420
.10.4050/JAHS.55.012004
39.
Acosta
,
J.
,
de Cos
,
C.
, and
Ollero
,
A.
,
2020
, “
Accurate Control of Aerial Manipulators Outdoors—A Reliable and Self-Coordinated Nonlinear Approach
,”
Aerosp. Sci. Technol.
,
99
, p.
105731
.10.1016/j.ast.2020.105731
40.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals Syst.
,
2
, pp.
303
314
.10.1007/BF02551274
You do not currently have access to this content.