Abstract

We investigate a family of one-dimensional (1D) Hamiltonian semi-infinite particle lattices whose interactions involve exclusively terms of fourth order in the potential. Our aim is to examine their distinct role in the dynamics, in the absence of quadratic (harmonic) interactions, which are typically included in most studies, as they are known to play an important role in many physical phenomena. We also include in our potentials on-site terms of the sine-Gordon type, which are also considered in many studies in connection with localization effects. Our 1D lattices are subjected to sinusoidal perturbation on one end and an absorbing boundary on the other. To simulate a semi-infinite chain, we will consider a relatively long chain with string coupling. Using reliable finite difference discretization schemes, we establish the existence of nonlinear supratransmission for both short-range and long-range interactions, and demonstrate that the presence of quadratic interactions is not necessary for a system to show nonlinear supratransmission. Additionally, we provide diagrams depicting novel relations between the critical amplitude at which supratransmission is triggered versus driving frequency and a parameter measuring the length of the interactions. Our investigation also shows that the presence of on-site potentials is also not crucial for the system to present supratransmission.

References

1.
Caputo
,
J.-G.
,
Leon
,
J.
, and
Spire
,
A.
,
2001
, “
Nonlinear Energy Transmission in the Gap
,”
Phys. Lett. A
,
283
(
1–2
), pp.
129
135
.10.1016/S0375-9601(01)00192-X
2.
Khomeriki
,
R.
, and
Leon
,
J.
,
2005
, “
Bistability in the Sine-Gordon Equation: The Ideal Switch
,”
Phys. Rev. E
,
71
(
5
), p.
056620
.10.1103/PhysRevE.71.056620
3.
Khomeriki
,
R.
,
Lepri
,
S.
, and
Ruffo
,
S.
,
2004
, “
Nonlinear Supratransmission and Bistability in the Fermi-Pasta-Ulam Model
,”
Phys. Rev. E
,
70
(
6
), p.
066626
.10.1103/PhysRevE.70.066626
4.
Geniet
,
F.
, and
Leon
,
J.
,
2003
, “
Nonlinear Supratransmission
,”
J. Phys. Condens. Matter
,
15
(
17
), pp.
2933
2949
.10.1088/0953-8984/15/17/341
5.
Leon
,
J.
, and
Spire
,
A.
,
2004
, “
Gap Soliton Formation by Nonlinear Supratransmission in Bragg Media
,”
Phys. Lett. A
,
327
(
5–6
), pp.
474
480
.10.1016/j.physleta.2004.05.054
6.
Bodo
,
B.
,
Morfu
,
S.
,
Marquié
,
P.
, and
Rosse
,
M.
,
2010
, “
Klein–Gordon Electronic Network Exhibiting Supratransmission Effect
,”
Electron. Lett.
,
46
(
2
), pp.
123
124
.10.1049/el.2010.3200
7.
Alima
,
R.
,
Morfu
,
S.
,
Marquié
,
P.
,
Bodo
,
B.
, and
Essimbi
,
B.
,
2017
, “
Influence of a Nonlinear Coupling on the Supratransmission Effect in Modified Sine-Gordon and Klein–Gordon Lattices
,”
Chaos, Solitons Fractals
,
100
, pp.
91
99
.10.1016/j.chaos.2017.05.009
8.
Togueu Motcheyo
,
A. B.
,
Kimura
,
M.
,
Doi
,
Y.
, and
Tchawoua
,
C.
,
2019
, “
Supratransmission in Discrete One-Dimensional Lattices With the Cubic-Quintic Nonlinearity
,”
Nonlinear Dyn.
,
95
(
3
), pp.
2461
2468
.10.1007/s11071-018-4707-y
9.
Anghel-Vasilescu
,
P.
,
Dorignac
,
J.
,
Geniet
,
F.
,
Leon
,
J.
, and
Taki
,
M.
,
2010
, “
Nonlinear Supratransmission in Multicomponent Systems
,”
Phys. Rev. Lett.
,
105
(
7
), p.
074101
.10.1103/PhysRevLett.105.074101
10.
Motcheyo
,
A. T.
,
Tchawoua
,
C.
, and
Tchameu
,
J. T.
,
2013
, “
Supratransmission Induced by Waves Collisions in a Discrete Electrical Lattice
,”
Phys. Rev. E
,
88
(
4
), p.
040901
.10.1103/PhysRevE.88.040901
11.
Yousefzadeh
,
B.
, and
Phani
,
A. S.
,
2016
, “
Supratransmission in a Disordered Nonlinear Periodic Structure
,”
J. Sound Vib.
,
380
, pp.
242
266
.10.1016/j.jsv.2016.06.001
12.
Kenmogne
,
F.
,
Ndombou
,
G. B.
,
Yemélé
,
D.
, and
Fomethe
,
A.
,
2015
, “
Nonlinear Supratransmission in a Discrete Nonlinear Electrical Transmission Line: Modulated Gap Peak Solitons
,”
Chaos, Solitons Fractals
,
75
, pp.
263
271
.10.1016/j.chaos.2015.02.026
13.
Cherednichenko
,
A. I.
,
Zakharov
,
P. V.
,
Starostenkov
,
M. D.
,
Sysoeva
,
M. O.
, and
Eremin
,
A. M.
,
2019
, “
Nonlinear Supratransmission in a Pt3Al Crystal at Intense External Influence
,”
Comput. Res. Model.
,
11
(
1
), pp.
109
117
.10.20537/2076-7633-2019-11-1-109-117
14.
Khomeriki
,
R.
,
Leon
,
J.
, and
Chevriaux
,
D.
,
2006
, “
Quantum Hall Bilayer Digital Amplifier
,”
Eur. Phys. J. B-Condens. Matter Complex Syst.
,
49
(
2
), pp.
213
218
.10.1140/epjb/e2006-00053-9
15.
Chevriaux
,
D.
,
Khomeriki
,
R.
, and
Leon
,
J.
,
2006
, “
Bistable Transmitting Nonlinear Directional Couplers
,”
Mod. Phys. Lett. B
,
20
(
10
), pp.
515
532
.10.1142/S0217984906011190
16.
Khomeriki
,
R.
, and
Ruffo
,
S.
,
2005
, “
Nonadiabatic Landau-Zener Tunneling in Waveguide Arrays With a Step in the Refractive Index
,”
Phys. Rev. Lett.
,
94
(
11
), p.
113904
.10.1103/PhysRevLett.94.113904
17.
Macías-Díaz
,
J. E.
, and
Puri
,
A.
,
2008
, “
On the Transmission of Binary Bits in Discrete Josephson-Junction Arrays
,”
Phys. Lett. A
,
372
(
30
), pp.
5004
5010
.10.1016/j.physleta.2008.05.049
18.
Macías-Díaz
,
J. E.
, and
Puri
,
A.
,
2007
, “
On the Propagation of Binary Signals in Damped Mechanical Systems of Oscillators
,”
Phys. D Nonlinear Phenom.
,
228
(
2
), pp.
112
121
.10.1016/j.physd.2007.02.007
19.
Ervin
,
V. J.
,
Macías-Díaz
,
J. E.
, and
Ruiz-Ramírez
,
J.
,
2015
, “
A Positive and Bounded Finite Element Approximation of the Generalized Burgers–Huxley Equation
,”
J. Math. Anal. Appl.
,
424
(
2
), pp.
1143
1160
.10.1016/j.jmaa.2014.11.047
20.
Macías-Díaz
,
J. E.
, and
Medina-Ramírez
,
I. E.
,
2009
, “
An Implicit Four-Step Computational Method in the Study on the Effects of Damping in a Modified α-Fermi-Pasta-Ulam Medium
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
7
), pp.
3200
3212
.10.1016/j.cnsns.2008.12.013
21.
Macías-Díaz
,
J.
, and
Puri
,
A.
,
2005
, “
A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein–Gordon Equation
,”
Numer. Methods Partial Diff. Eqs.
,
21
(
5
), pp.
998
1015
.10.1002/num.20094
22.
Christodoulidi
,
H.
,
Bountis
,
A.
, and
Drossos
,
L.
,
2018
, “
The Effect of Long-Range Interactions on the Dynamics and Statistics of 1D Hamiltonian Lattices With on-Site Potential
,”
Eur. Phys. J. Spec. Top.
,
227
(
5–6
), pp.
563
573
.10.1140/epjst/e2018-00003-9
23.
Christodoulidi
,
H.
,
Bountis
,
T.
,
Tsallis
,
C.
, and
Drossos
,
L.
,
2016
, “
Dynamics and Statistics of the Fermi-Pasta-Ulam β-Model With Different Ranges of Particle Interactions
,”
J. Stat. Mech.
,
2016
(
12
), p.
123206
.10.1088/1742-5468/aa4f0e
24.
Dauxois
,
T.
,
Ruffo
,
S.
,
Arimondo
,
E.
, and
Wilkens
,
M.
,
2002
, “
Dynamics and Thermodynamics of Systems With Long-Range Interactions: An Introduction
,”
Dynamics and Thermodynamics of Systems With Long-Range Interactions
,
Springer
,
Berlin
, pp.
1
19
.
25.
Viana
,
R.
,
Batista
,
A.
,
Batista
,
C.
, and
Iarosz
,
K.
,
2017
, “
Lyapunov Spectrum of Chaotic Maps With a Long-Range Coupling Mediated by a Diffusing Substance
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1589
1601
.10.1007/s11071-016-3135-0
26.
Lieberman-Aiden
,
E.
,
van Berkum
,
N. L.
,
Williams
,
L.
,
Imakaev
,
M.
,
Ragoczy
,
T.
,
Telling
,
A.
,
Amit
,
I.
,
Lajoie
,
B. R.
,
Sabo
,
P. J.
,
Dorschner
,
M. O.
,
Sandstrom
,
R.
,
Bernstein
,
B.
,
Bender
,
M. A.
,
Groudine
,
M.
,
Gnirke
,
A.
,
Stamatoyannopoulos
,
J.
,
Mirny
,
L. A.
,
Lander
,
E. S.
, and
Dekker
,
J.
,
2009
, “
Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
,”
Science
,
326
(
5950
), pp.
289
293
.10.1126/science.1181369
27.
Devanand
,
K.
, and
Selser
,
J.
,
1991
, “
Asymptotic Behavior and Long-Range Interactions in Aqueous Solutions of Poly (Ethylene Oxide)
,”
Macromolecules
,
24
(
22
), pp.
5943
5947
.10.1021/ma00022a008
28.
Viyuela
,
O.
,
Fu
,
L.
, and
Martin-Delgado
,
M. A.
,
2018
, “
Chiral Topological Superconductors Enhanced by Long-Range Interactions
,”
Phys. Rev. Lett.
,
120
(
1
), p.
017001
.10.1103/PhysRevLett.120.017001
29.
Jones
,
C. P.
, and
Ferré-D'Amaré
,
A. R.
,
2017
, “
Long-Range Interactions in Riboswitch Control of Gene Expression
,”
Annu. Rev. Biophys.
,
46
(
1
), pp.
455
481
.10.1146/annurev-biophys-070816-034042
30.
Stavreva
,
D. A.
,
Coulon
,
A.
,
Baek
,
S.
,
Sung
,
M.-H.
,
John
,
S.
,
Stixova
,
L.
,
Tesikova
,
M.
,
Hakim
,
O.
,
Miranda
,
T.
,
Hawkins
,
M.
,
Stamatoyannopoulos
,
J. A.
,
Chow
,
C. C.
, and
Hager
,
G. L.
,
2015
, “
Dynamics of Chromatin Accessibility and Long-Range Interactions in Response to Glucocorticoid Pulsing
,”
Genome Res.
,
25
(
6
), pp.
845
857
.10.1101/gr.184168.114
31.
Tarasov
,
V. E.
,
2006
, “
Continuous Limit of Discrete Systems With Long-Range Interaction
,”
J. Phys. A: Math. Gen.
,
39
(
48
), pp.
14895
14910
.10.1088/0305-4470/39/48/005
32.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
,
2006
, “
Fractional Dynamics of Systems With Long-Range Interaction
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
8
), pp.
885
898
.10.1016/j.cnsns.2006.03.005
33.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
,
2008
, “
Conservation Laws and Hamilton's Equations for Systems With Long-Range Interaction and Memory
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
1860
1878
.10.1016/j.cnsns.2007.05.017
34.
Dong
,
B.-Q.
,
Wu
,
J.
, and
Ye
,
Z.
,
2019
, “
Global Regularity for a 2D Tropical Climate Model With Fractional Dissipation
,”
J. Nonlinear Sci.
,
29
(
2
), pp.
511
550
.10.1007/s00332-018-9495-5
35.
Wu
,
G.-C.
,
Deng
,
Z.-G.
,
Baleanu
,
D.
, and
Zeng
,
D.-Q.
,
2019
, “
New Variable-Order Fractional Chaotic Systems for Fast Image Encryption
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
29
(
8
), p.
083103
.10.1063/1.5096645
36.
Macías-Díaz
,
J. E.
,
2017
, “
Numerical Study of the Process of Nonlinear Supratransmission in Riesz Space-Fractional Sine-Gordon Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
46
, pp.
89
102
.10.1016/j.cnsns.2016.11.002
37.
Macías-Díaz
,
J. E.
,
2017
, “
Persistence of Nonlinear Hysteresis in Fractional Models of Josephson Transmission Lines
,”
Commun. Nonlinear Sci. Numer. Simul.
,
53
, pp.
31
43
.10.1016/j.cnsns.2017.04.030
38.
Macías-Díaz
,
J. E.
, and
Bountis
,
A.
,
2018
, “
Supratransmission in β-Fermi–Pasta–Ulam Chains With Different Ranges of Interactions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
63
, pp.
307
321
.10.1016/j.cnsns.2018.04.007
39.
Macías-Díaz
,
J. E.
,
Bountis
,
A.
, and
Christodoulidi
,
H.
,
2019
, “
Energy Transmission in Hamiltonian Systems of Globally Interacting Particles With Klein-Gordon on-Site Potentials
,”
Math. Eng.
,
1
(
2
), pp.
343
358
.10.3934/mine.2019.2.343
40.
Macías-Díaz
,
J. E.
,
2008
, “
Numerical Study of the Transmission of Energy in Discrete Arrays of Sine-Gordon Equations in Two Space Dimensions
,”
Phys. Rev. E
,
77
(
1
), p.
016602
.10.1103/PhysRevE.77.016602
41.
Macías-Díaz
,
J. E.
,
2018
, “
Numerical Simulation of the Nonlinear Dynamics of Harmonically Driven Riesz-Fractional Extensions of the Fermi-Pasta-Ulam Chains
,”
Commun. Nonlinear Sci. Numer. Simul.
,
55
, pp.
248
264
.10.1016/j.cnsns.2017.07.012
42.
Geniet
,
F.
, and
Leon
,
J.
,
2002
, “
Energy Transmission in the Forbidden Band Gap of a Nonlinear Chain
,”
Phys. Rev. Lett.
,
89
(
13
), p.
134102
.10.1103/PhysRevLett.89.134102
43.
Macías-Díaz
,
J. E.
,
2018
, “
An Explicit Dissipation-Preserving Method for Riesz Space-Fractional Nonlinear Wave Equations in Multiple Dimensions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
67
87
.10.1016/j.cnsns.2017.10.019
44.
Yousefzadeh
,
B.
, and
Phani
,
A. S.
,
2015
, “
Energy Transmission in Finite Dissipative Nonlinear Periodic Structures From Excitation Within a Stop Band
,”
J. Sound Vib.
,
354
, pp.
180
195
.10.1016/j.jsv.2015.06.002
45.
Macías-Díaz
,
J. E.
,
2018
, “
Computational Study of the Nonlinear Bistability in a Relativistic Wave Equation With Anomalous Diffusion
,”
Int. J. Mod. Phys. C
,
29
(
07
), p.
1850057
.10.1142/S0129183118500572
You do not currently have access to this content.