Abstract

The motivation of the study is solving the mathematical problems including time fractional Schrödinger equation by means of a method which is a combination of Chebyshev collocation method and residual power series method (RPSM). The time fractional derivative in local fractional derivative sense is discretized with the help of Chebyshev collocation method to reduce time fractional Schrödinger equation into a system including two fractional ordinary differential equations. At this stage, applying RPSM produces the truncated solution of the mathematical problem. Given examples illustrated that this method is applicable and compatible for solving mathematical problems with fractional derivative.

References

1.
Naber
,
M.
,
2004
, “
Time Fractional Schrödinger Equation
,”
J. Math. Phys.
,
45
(
8
), pp.
3339
3352
.10.1063/1.1769611
2.
Wang
,
S.
, and
Xu
,
M.
,
2007
, “
Generalized Fractional Schrödinger Equation With Spacetime Fractional Derivatives
,”
J. Math. Phys.
,
48
(
4
), p.
043502
.10.1063/1.2716203
3.
Ionescu
,
A. D.
, and
Pusateri
,
F.
,
2014
, “
Generalized Fractional Schrödinger Equations in One Dimension
,”
J. Funct. Anal.
,
266
(
1
), pp.
139
176
.10.1016/j.jfa.2013.08.027
4.
Hu
,
J.
,
Xin
,
J.
, and
Lu
,
H.
,
2011
, “
The Global Solution for a Class of Systems of Fractional Nonlinear Schrödinger Equations With Periodic Boundary Condition
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1510
1521
.10.1016/j.camwa.2011.05.039
5.
Owolabi
,
K. M.
, and
Atangana
,
A.
,
2016
, “
Numerical Solution of Fractional-in-Space Nonlinear Schrödinger Equation With the Riesz Fractional Derivative
,”
Eur. Phys. J. Plus
,
131
(
9
), p.
335
.10.1140/epjp/i2016-16335-8
6.
Bhrawy
,
A. H.
, and
Abdelkawy
,
M. A.
,
2015
, “
A Fully Spectral Collocation Approximation for Multi-Dimensional Fractional Schrödinger Equations
,”
J. Comput. Phys.
,
294
, pp.
462
483
.10.1016/j.jcp.2015.03.063
7.
Khader
,
M. M.
, and
Saad
,
K. M.
,
2018
, “
A Numerical Approach for Solving the Fractional Fisher Equation Using Chebyshev Spectral Collocation Method
,”
Chaos Solitons Fractals
,
110
, pp.
169
177
.10.1016/j.chaos.2018.03.018
8.
Khader
,
M. M.
, and
Saad
,
K. M.
,
2018
, “
A Numerical Study by Using the Chebyshev Collocation Method for a Problem of Biological Invasion: Fractional Fisher Equation
,”
Int. J. Biomath.
,
11
(
8
), p.
1850099
.10.1142/S1793524518500997
9.
Jumarie
,
G.
,
2009
, “
Laplace's Transform of Fractional Order Via the Mittag-Leffler Functionand Modified Riemann-Liouville Derivative
,”
Appl. Math. Lett.
,
22
(
11
), pp.
1659
1664
.10.1016/j.aml.2009.05.011
10.
Yang
,
X.
,
Kang
,
Z.
, and
Liu
,
C.
,
2010
, “
Local Fractional Fouriers Transform Based on the Local Fractional Calculus
,”
International Conference on Electrical and Control Engineering
, Wuhan, China, June 25–27,
IEEE Computer Society
, pp.
1242
1245
.10.1109/iCECE.2010.1416
11.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
,
1998
, “
Local Fractional FokkerPlanck Equation
,”
Phys. Rev. Lett.
,
80
(
2
), pp.
214
217
.10.1103/PhysRevLett.80.214
12.
Adda
,
F. B.
, and
Cresson
,
J.
,
2001
, “
About Non-Differentiable Functions
,”
J. Math. Anal. Appl.
,
263
(
2
), pp.
721
737
.10.1006/jmaa.2001.7656
13.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
,
1996
, “
Fractional Differentiability of Nowhere Differentiable Functions and Dimensions
,”
Chaos
,
6
(
4
), pp.
505
513
.10.1063/1.166197
14.
Yang
,
X.
,
2011
, “
Local Fractional Laplaces Transform Based on the Local Fractional Calculus
,”
Proceedings of the International Conference on Computer Science and Information Engineering
, Zhengzhou, China,
Springer
, Berlin, pp.
391
397
.10.1007/978-3-642-21411-0_64
15.
Yang, X. J., Srivastava, H. M., Torres, D. F., and Zhang, Y.,
2017
, “
Non-Differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations
,”
Fundam. Inform.
,
151
, pp.
409
417
.10.3233/FI-2017-1500
16.
Babakhani
,
A.
, and
Gejji
,
V. D.
,
2002
, “
On Calculus of Local Fractional Derivatives
,”
J. Math. Anal. Appl.
,
270
(
1
), pp.
66
79
.10.1016/S0022-247X(02)00048-3
17.
Chen
,
Y.
,
Yan
,
Y.
, and
Zhang
,
K.
,
2010
, “
On the Local Fractional Derivative
,”
J. Math. Anal. Appl.
,
362
(
1
), pp.
17
33
.10.1016/j.jmaa.2009.08.014
18.
Yang
,
X. J.
,
2011
,
Local Fractional Functional Analysis and Its Applications
,
Asian Academic
,
Hong Kong
, p.
33
.
19.
Yang
,
X. J.
,
2012
,
Advanced Local Fractional Calculus and Its Applications
,
World Science
,
New York
, p.
34
.
20.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Srivastava
,
H. M.
,
2015
, “
Local Fractional Similarity Solution for the Diusion Equation Dened on Cantor Sets
,”
Appl. Math. Lett.
,
47
, pp.
54
60
.10.1016/j.aml.2015.02.024
21.
Yang
,
X.
,
Baleanu
,
J. D.
, and
Srivastava
,
H. M.
,
2015
,
Local Fractional Integral Transforms and Their Applications
,
Academic Press
,
New York
.
22.
Yang
,
X. J.
,
Srivastava
,
H. M.
,
He
,
J. H.
, and
Baleanu
,
D.
,
2013
, “
Cantor-Type Cylindricalcoordinate Method for Dierential Equations With Local Fractional Derivatives
,”
Phys. Lett. A
,
377
(
28–30
), pp.
1696
1700
.10.1016/j.physleta.2013.04.012
23.
Zhang
,
Y.
,
Srivastava
,
H. M.
, and
Baleanu
,
M. C.
,
2015
, “
Local Fractional Variational Iteration Algorithm II for Non-Homogeneous Model Associated With the Non-Differentiable Heat Flow
,”
Adv. Mech. Eng.
,
7
(
10
), pp.
1
5
.10.1177/1687814015608567
24.
Carpinteri
,
A.
,
Chiaia
,
B.
, and
Cornetti
,
P.
,
2001
, “
Static-Kinematic Duality and the Principle of Virtual Work in the Mechanics of Fractal Media
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
1–2
), pp.
3
11
.10.1016/S0045-7825(01)00241-9
25.
Bayrak
,
M. A.
,
Demir
,
A.
, and
Ozbilge
,
E.
,
2020
, “
Numerical Solution of Fractional Diffusion Equation by Chebyshev Collocation Method and Residual Power Series Method
,”
Alexandria Eng. J
,
59
(
6
), pp.
4709
4717
.10.1016/j.aej.2020.08.033
You do not currently have access to this content.