Abstract

The tracking control of underactuated systems is a challenging problem due to the structural differences compared to fully actuated systems. Contrarily to fully actuated systems, resolving the inverse kinematics problem of underactuated systems is not possible independently from the dynamic equations. Instead, the inverse dynamics must be addressed. It is common to extend the computed torque control (CTC) technique with servoconstraints. Besides the CTC's clearness, the stability of the system cannot be always guaranteed. A novel predictive controller (PC) is presented in this paper. Our PC applies the variational principle to design the motion of the system in order to achieve a stable motion with the lowest possible tracking error. To demonstrate the applicability and the performance of the PC method, a numerical study is presented for a planar manipulator resulting in about 20% RMS error compared to the CTC method from the literature.

References

1.
Seifried
,
R.
,
2014
, “
Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design
,”
Solid Mech. Appl.
,
205
, pp.
9
54
.10.1007/978-3-319-01228-5
2.
El-Badawy
,
A. A.
, and
Shehata
,
M. M. G.
,
2015
, “
Anti-Sway Control of a Tower Crane Using Inverse Dynamics
,”
ICET 2014—Second International Conference on Engineering and Technology
,
Institute of Electrical and Electronics Engineers
, Cairo, Egypt, Apr. 19–20.10.1109/ICEngTechnol.2014.7016747
3.
Raffo
,
G. V.
,
Ortega
,
M. G.
, and
Rubio
,
F. R.
,
2011
, “
Path Tracking of a UAV Via an Underactuated H Control Strategy
,”
Eur. J. Control
,
17
(
2
), pp.
194
213
.10.3166/ejc.17.194-213
4.
Tedrake
,
R.
,
2009
, “
Underactuated Robotics: Learning, Planning, and Control for Efficient and Agile Machines Course Notes for MIT 6.832
,” Massachusetts Institute of Technology, MS.https://homes.cs.washington.edu/~todorov/courses/amath579/Tedrake_notes.pdf
5.
Collins
,
S. H.
,
Wisse
,
M.
, and
Ruina
,
A.
,
2001
, “
A Three-Dimensional Passive-Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Rob. Res.
,
20
(
7
), pp.
607
615
.10.1177/02783640122067561
6.
McHenry
,
H. M.
,
2009
,
Evolution: The First Four Billion Years
,
Harvard University Press
,
Human Evolution
, Cambridge, MS, pp.
256
280
.
7.
Kovács
,
L.
,
Kövecses
,
J.
,
Zelei
,
A.
,
Bencsik
,
L.
, and
Stépán
,
G.
,
2011
, “
Servo-Constraint Based Computed Torque Control of Underactuated Mechanical Systems
,”
ASME
Paper No. DETC2011-48533.10.1115/DETC2011-48533
8.
Peng
,
W.
,
Lin
,
Z.
, and
Su
,
J.
,
2009
, “
Computed Torque Control-Based Composite Nonlinear Feedback Controller for Robot Manipulators With Bounded Torques
,”
IET Control Theory Appl.
,
3
(
6
), pp.
701
711
.10.1049/iet-cta.2008.0259
9.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2014
, “
A Case Study of Inverse Dynamics Control of Manipulators With Passive Joints
,”
J. Theor. Appl. Mech.
,
52
(
3
), pp.
793
801
.http://jtam.pl/A-case-study-of-inverse-dynamics-control-of-manipulators-with-passive-joints-,102157,0,2.html
10.
Otto
,
S.
, and
Seifried
,
R.
,
2018
, “
Real-Time Trajectory Control of an Overhead Crane Using Servo-Constraints
,”
Multibody Syst. Dyn.
,
42
(
1
), pp.
1
17
.10.1007/s11044-017-9569-4
11.
Berger
,
T.
,
Otto
,
S.
,
Reis
,
T.
, and
Seifried
,
R.
,
2019
, “
Combined Open-Loop and Funnel Control for Underactuated Multibody Systems
,”
Nonlinear Dyn.
,
95
(
3
), pp.
1977
1998
.10.1007/s11071-018-4672-5
12.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
(Communications and Control Engineering),
Springer London
,
London
.
13.
Spong
,
M.
,
1994
, “
Partial Feedback Linearization of Underactuated Mechanical Systems
,”
Proceedings of IROS'94
,
Munich, Germany
, Sept. 12–16, pp.
314
321
.10.1109/IROS.1994.407375
14.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1995
,
Applied Nonlinear Control
,
Prentice Hall
, Englewood Cliffs, NJ.
15.
Schnelle
,
F.
, and
Eberhard
,
P.
,
2016
, “
Adaptive Model Predictive Control Design for Underactuated Multibody Systems With Uncertain Parameters
,”
ROMANSY 21—Robot Design, Dynamics and Control: Proceedings of the 21st CISM-IFToMM Symposium
, Udine, Italy, June 20–23, pp.
145
152
.https://www.springer.com/gp/book/9783319337135
16.
Bencsik
,
L.
,
Kovács
,
L. L.
, and
Zelei
,
A.
,
2017
, “
Stabilization of Internal Dynamics of Underactuated Systems by Periodic Servo-Constraints
,”
Int. J. Struct. Stab. Dyn.
,
17
(
05
), p.
1740004
.10.1142/S0219455417400041
17.
Seifried
,
R.
,
2009
, “
Optimization of the Internal Dynamics of Underactuated Robots
,”
PAMM
,
9
(
1
), pp.
625
626
.10.1002/pamm.200910283
18.
Catlin
,
D. E.
,
1989
,
The Linear Quadratic Tracking Problem
,
Springer
,
New York
, pp.
164
187
.
19.
Lewis
,
F. L.
,
Vrabie
,
D. L.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
,
Wiley
,
Hoboken, NJ
.
20.
Bastos
,
G.
, and
Brüls
,
O.
,
2020
, “
Analysis of Open-Loop Control Design and Parallel Computation for Underactuated Manipulators
,”
Acta Mech.
,
231
(
6
), pp.
2439
2456
.10.1007/s00707-020-02656-0
21.
Hansen
,
A.
,
Li
,
Y.
, and
Hedrick
,
J. K.
,
2017
, “
Invariant Sliding Domains for Constrained Linear Receding Horizon Tracking Control
,”
IFAC J. Syst. Control
,
2
, pp.
12
17
.10.1016/j.ifacsc.2017.11.001
22.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
23.
Bencsik
,
L.
,
Bodor
,
B.
, and
Kovács
,
L.
,
2016
, “
Predictive Trajectory Tracking of Under-Actuated Systems
,”
Proceedings of the Fourth Joint International Conference on Multibody System Dynamics
, Montreal, Canada, May 29–June 2.
24.
Bodor
,
B.
, and
Bencsik
,
L.
,
2017
, “
Predictive Control of Robot Manipulators With Flexible Joints
,”
Proceedings of the Ninth European Nonlinear Dynamics Conference
, Budapest, Hungary, June 25–30.
25.
Zelei
,
A.
, and
Stépán
,
G.
,
2012
, “
Case Studies for Computed Torque Control of Constrained Underactuated Systems
,”
Period. Polytech. Mech. Eng.
,
56
(
1
), pp.
73
80
.10.3311/pp.me.2012-1.11
26.
Spong
,
M. W.
,
1998
, “
Underactuated Mechanical Systems
,”
Control Probl. Rob. Autom.
,
230
, pp.
135
150
.10.1007/BFb0015072
27.
Kirgetov
,
V. I.
,
1967
, “
The Motion of Controlled Mechanical Systems With Prescribed Constraints (Servoconstraints)
,”
J. Appl. Math. Mech.
,
31
(
3
), pp.
465
477
.10.1016/0021-8928(67)90029-9
28.
Blajer
,
W.
,
Seifried
,
R.
, and
Kołodziejczyk
,
K.
,
2015
, “
Servo-Constraint Realization for Underactuated Mechanical Systems
,”
Archive Appl. Mech.
,
85
(
9–10
), pp.
1191
1207
.10.1007/s00419-014-0959-2
29.
Hansen
,
A.
, and
Hedrick
,
J. K.
,
2015
, “
Receding Horizon Sliding Control for Linear and Nonlinear Systems
,”
Proceedings of the American Control Conference
,
Institute of Electrical and Electronics Engineers
, Chicago, IL, July 1–3, pp.
1629
1634
.10.1109/ACC.2015.7170966
30.
Hollerbach
,
J. M.
, and
Suh
,
K. C.
,
1987
, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
308
316
.10.1109/JRA.1987.1087111
31.
Nakamura
,
Y.
,
1991
,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley
,
Reading, MA
.
32.
Zelei
,
A.
,
Bencsik
,
L.
,
Kovács
,
L. L.
, and
Stépán
,
G.
,
2012
, “
Redundancy Resolution of the Underactuated Manipulator ACROBOTER
,”
Romansy 19—Robot Design, Dynamics and Control: Proceedings of the 19th CISM-IFtomm Symposium
, Paris, France, June 12–15, p.
17
.https://www.mm.bme.hu/~zelei/zelei_pub/zelei_2012_RoManSy.pdf
33.
Weinstock
,
R.
,
1952
,
Calculus of Variations
,
McGraw-Hill Book Company
, New York.
34.
Bartels
,
R. H.
, and
Stewart
,
G. W.
,
1972
, “
Solution of the Matrix Equation AX + XB = C [F4]
,”
Commun. ACM
,
15
(
9
), pp.
820
826
.10.1145/361573.361582
35.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2007
, “
Control of Underactuated Mechanical Systems With Servo-Constraints
,”
Nonlinear Dyn.
,
50
(
4
), pp.
781
791
.10.1007/s11071-007-9231-4
36.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2008
, “
Modeling of Underactuated Mechanical Systems in Partly Specified Motion
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
383
394
.https://www.semanticscholar.org/paper/Modeling-of-underactuated-mechanical-systems-in-Blajer-Kolodziejczyk/c965fad4acf4d4e0d8973f115374d0595bb5dd08
37.
Zelei
,
A.
,
Kovács
,
L. L.
, and
Stépán
,
G.
,
2011
, “
Computed Torque Control of an Under-Actuated Service Robot Platform Modeled by Natural Coordinates
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
5
), pp.
2205
2217
.10.1016/j.cnsns.2010.04.060
38.
Bencsik
,
L.
,
Bodor
,
B.
, and
Insperger
,
T.
,
2017
, “
Reconstruction of Motor Force During Stick Balancing
,”
Proceedings of DSTA 2017: Mathematical and Numerical Aspects of Dynamical System Analysis
, Lodz, Poland, Dec. 11–13, pp.
57
64
.http://real.mtak.hu/74533/1/2017_DSTA_Bencsik_Bodor_IT_motor_force_u.pdf
39.
Bodor
,
B.
,
Bencsik
,
L.
, and
Insperger
,
T.
,
2019
, “
Control Force Recalculation for Balancing Problems
,”
Int. J. Struct. Stab. Dyn.
,
19
(
05
), p.
1941010
.10.1142/S0219455419410104
40.
Dziewiecki
,
K.
,
Mazur
,
Z.
, and
Blajer
,
W.
,
2013
, “
Assessment of External and Internal Loads in the Triple Jump Via Inverse Dynamics Simulation
,”
Biol. Sport
,
30
(
2
), pp.
103
109
.10.5604/20831862.1044225
41.
Dziewiecki
,
K.
,
Blajer
,
W.
,
Mazur
,
Z.
, and
Czaplicki
,
A.
,
2014
, “
Modeling and Computational Issues in the Inverse Dynamics Simulation of Triple Jump
,”
Multibody Syst. Dyn.
,
32
(
3
), pp.
299
316
.10.1007/s11044-013-9375-6
42.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
, New York.
You do not currently have access to this content.