Abstract

The nonlinear frequency response characteristics of a spur gear pair with fractional-order derivative under combined internal and external excitations are investigated based on the incremental harmonic balance (IHB) method. First, a pure torsional vibration model is proposed that contains various complex factors, such as the time-varying mesh stiffness, transmission error, the fluctuation of input torque, backlash. Then, the IHB method is developed to calculate the higher-order approximate solution of the system, and the correctness of the results is verified by comparing with numerical simulation results obtained by the power series expansion (PSE) method. Furthermore, the types of various impact situations and their judgment conditions are discussed, and the different impact behaviors are analyzed in detail when ω[0,1.5] by using phase diagrams and amplitude–frequency response curves. The influence of important parameters on the dynamic characteristics of gear pair is analyzed at last. The results indicate that the analytical solution derived by IHB method is sufficiently precise. Significantly, the dynamic characteristics of the system could be effectively controlled by adjusting time-varying mesh stiffness coefficient, the order and coefficient of fractional-order term, and the amplitude of internal excitation or external excitation. As a part of the theory of fractional-order mechanical system, the impact performance of fractional-order gear pair is approached for the first time by analytical method.

References

1.
Li
,
R. F.
, and
Wang
,
J. J.
,
1997
,
Geared System Dynamic: Vibration, Shock and Noise
,
Science Press
,
Beijing, China
.
2.
Fakhfakh
,
T.
,
Chaari
,
F.
, and
Haddar
,
M.
,
2005
, “
Numerical and Experimental Analysis of a Gear System With Teeth Defects
,”
Int. J. Adv. Manuf. Technol.
,
25
(
5–6
), pp.
542
550
.10.1007/s00170-003-1830-8
3.
Liu
,
G.
, and
Parker
,
R. G.
,
2008
, “
Nonlinear Dynamics of Idler Gear Systems
,”
Nonlinear Dyn.
,
53
(
4
), pp.
345
367
.10.1007/s11071-007-9317-z
4.
Zhang
,
Y.
, and
Spanos
,
P. D.
,
2020
, “
Efficient Response Determination of a M-D-O-F Gear Model Subject to Combined Periodic and Stochastic Excitations
,”
Int. J. Non-Linear Mech.
,
120
, p.
103378
.10.1016/j.ijnonlinmec.2019.103378
5.
Yao
,
L. L.
,
Meng
,
Z.
,
Bu
,
J. Q.
, and
Sun
,
Y. Z.
,
2020
, “
Investigation of Nonlinear Characteristics of a Gear Transmission System in a Braiding Machine With Multiple Excitation Factors
,”
Shock. Vib.
,
2020
(
17
), pp.
1
20
.10.1155/2020/2747204
6.
Zhao
,
M. M.
, and
Ji
,
J. C.
,
2015
, “
Nonlinear Torsional Vibrations of a Wind Turbine Gearbox
,”
Appl. Math. Model.
,
39
(
16
), pp.
4928
4950
.10.1016/j.apm.2015.03.026
7.
Huang
,
G. H.
,
Zhou
,
N.
, and
Zhang
,
W. H.
,
2016
, “
Effect of Internal Dynamic Excitation of the Traction System on the Dynamic Behavior of a High-Speed Train
,”
Proc. Inst. Mech. Eng. F J. Rai.
,
230
(
8
), pp.
1899
1907
.10.1177/0954409715617787
8.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Liu
,
X. D.
,
2006
, “
Nonlinear Dynamics of a Spur Gear Pair With Time-Varying Stiffness and Backlash Based on Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
48
(
11
), pp.
1256
1263
.10.1016/j.ijmecsci.2006.06.003
9.
Velex
,
P.
, and
Ajmi
,
M.
,
2006
, “
On the Modelling of Excitations in Geared Systems by Transmission Errors
,”
J. Sound Vib.
,
290
(
3–5
), pp.
882
909
.10.1016/j.jsv.2005.04.033
10.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
, “Fractional Integrals and Derivatives: Theory and Applications,” Minsk Nauka I Tekhnika,
Yverdon
,
Gordon and Breach
.
11.
Tang
,
J. H.
, and
Yin
,
C. T.
,
2021
, “
Dynamic Response of Mathieu-Duffing Oscillator With Caputo Derivative
,”
Int. J. Nonlin. Sci. Num.
, epub.
12.
Pirasteh-Moghadam
,
M.
,
Saryazdi
,
M. G.
,
Loghman
,
E.
,
Kamali
,
E. A.
, and
Bakhtiari-Nejad
,
F.
,
2020
, “
Development of Neural Fractional Order PID Controller With Emulator
,”
ISA Trans.
,
106
(
2020
), pp.
293
302
.10.1016/j.isatra.2020.06.014
13.
Zamani
,
M.
,
Karimi-Ghartemani
,
M.
,
Sadati
,
N.
, and
Parniani
,
M.
,
2009
, “
Design of a Fractional Order PID Controller for an AVR Using Particle Swarm Optimization
,”
Control Eng. Pract.
,
17
(
12
), pp.
1380
1387
.10.1016/j.conengprac.2009.07.005
14.
Hedrih
,
K.
,
2020
, “
Independent Fractional Type Modes of Free and Forced Vibrations of Discrete Continuum Hybrid Systems of Fractional Type With Multi-Deformable Bodies
,”
New Trends Nonlinear Dyn.
, 3, pp.
315
324
. 10.1007/978-3-030-34724-6
15.
Hedrih
,
K.
,
2018
, “
Analytical Dynamics of Fractional Type Discrete System
,”
Adv. Theor. Appl. Mech.
,
11
(
2018
), pp.
15
47
.10.12988/atam.2018.883
16.
Hedrih
,
K.
, and
Machado
,
J. T.
,
2015
, “
Discrete Fractional Order System Vibrations
,”
Int. J. Non-Linear Mech.
,
73
, pp.
2
11
.10.1016/j.ijnonlinmec.2014.11.009
17.
Hedrih
,
K.
,
2014
, “
Elements of Mathematical Phenomenology in Dynamics of Multi-Body Systems With Fractionally Damped Discrete Continuous Layers
,”
Int. J. Mech.
,
8
(
1
), pp.
345
352
.https://www.naun.org/main/NAUN/mechanics/2014/b042003-061.pdf
18.
Hedrih
,
K.
, and
Filipovski
,
A.
,
2002
, “
Longitudinal Creep Vibrations of a Fractional Derivative Order Rheological Rod With Variable Cross Section
,”
Facta Univ. Ser. Mech., Autom. Control Rob.
,
3
(
12
), pp.
327
349
.http://casopisi.junis.ni.ac.rs/files/journals/2/olderissues/macar2002/macar2002-02.pdf
19.
Hedrih
,
K.
,
2014
, “
Generalized Function of Fractional Order Dissipation of System Energy and Extended Lagrange Differential Lagrange Equation in Matrix Form
,”
Dedicated to 86th Anniversary of Radu MIRON'S Birth
, Tensor, Tensor Society, Vol.
75
, Tokyo, pp.
35
51
.
20.
Luo
,
J. S.
,
Yu
,
D. J.
, and
Chen
,
X. M.
,
2012
, “
Gear Fault Diagnosis Under the Speed-Up and Speed-Down Process Based on the Chirplet Path Pursuit Algorithm and FrFT
,”
J. Mech. Eng.
,
48
(
07
), pp.
56
61
.10.3901/JME.2012.07.056
21.
Mei
,
J. M.
,
Jia
,
J. D.
,
Zeng
,
R. L.
,
Zhou
,
B.
, and
Zhao
,
H. M.
,
2016
, “
A Multi-Order FRFT Self-Adaptive Filter Based on Segmental Frequency Fitting and Early Fault Diagnosis in Gears
,”
Measurement
,
91
, pp.
532
540
.10.1016/j.measurement.2016.05.092
22.
Mei
,
J. M.
,
Xiao
,
Y. K.
,
Shen
,
H.
,
Qiao
,
L.
, and
Yang
,
Q. L.
,
2013
, “
Multi-Order FRFT Adaptive Filter and Its Application to Extract Weak Fault Feature Based on Sparse Signal Decomposition
,”
J. Vib. Eng.
,
26
(
5
), pp.
771
778
.http://qikan.cqvip.com/Qikan/Article/Detail?id=47837584
23.
Zhang
,
Y. Q.
,
Zhang
,
P. L.
, and
Li
,
B.
,
2015
, “
Application of Fractional Order Time-Frequency Local Binary Pattern Spectra in Gear Fault Diagnosis
,”
J. Vib. Shock
,
34
(
11
), pp.
122
127
.10.13465/j.cnki.jvs.2015.11.022
24.
Zhang
,
Y. Q.
,
Zhang
,
P. L.
,
Wu
,
D. H.
, and
Li
,
B.
,
2015
, “
Multifractal Feature Extraction for Fractional Time-Frequency Spectra of Gearbox Vibration Signals
,”
J. Vib. Shock
,
34
(
21
), pp.
76
81
.10.13465/j.cnki.jvs.2015.21.014
25.
Zhou
,
X. J.
,
Shao
,
Y. M.
,
Zhen
,
D.
,
Gu
,
F. S.
, and
Ball
,
A.
,
2011
, “
Gear Fault Signal Detection Based on an Adaptive Fractional Fourier Transform Filter
,”
J. Phys. Conf. Ser.
,
305
, p.
012022
.10.1088/1742-6596/305/1/012022
26.
Sun
,
Y. Q.
,
Chen
,
H. F.
,
Tang
,
L.
, and
Zhang
,
S.
,
2019
, “
Gear Fault Detection Analysis Method Based on Fractional Wavelet Transform and Back Propagation Neural Network
,”
CMES-Comp. Model. Eng.
,
121
(
3
), pp.
1011
1028
.10.32604/cmes.2019.07950
27.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Ma
,
B. Y.
,
2006
, “
Application of Fractional Spline Wavelet in Detection of Abrupt Information From Fault Gear System
,”
Key Eng. Mater.
,
324-325
(
Pt1
), pp.
371
374
.10.4028/www.scientific.net/KEM.324-325.371
28.
Hedrih
,
K. (S.).
, and
Nikolić-Stanojević
,
V.
,
2010
, “
A Model of Gear Transmission: Fractional Order System Dynamics
,”
Math. Probl. Eng.
,
2010
, pp.
1
256
.10.1155/2010/972873
29.
Nikolic-Stanojevic
,
V.
,
Veljovic
,
L.
, and
Dolicanin
,
C.
,
2013
, “
A New Model of the Fractional Order Dynamics of the Planetary Gears
,”
Math. Probl. Eng.
,
2013
, pp.
1
14
.10.1155/2013/932150
30.
Liu
,
L.
,
Niu
,
J. C.
, and
Li
,
X. H.
,
2018
, “
Dynamic Analysis of Gear System Under Fractional-Order PID Control With the Feedback of Meshing Error Change Rate
,”
Acta Mech.
,
229
(
9
), pp.
3833
3851
.10.1007/s00707-018-2194-3
31.
Natsiavas
,
S.
,
Theodossiades
,
S.
, and
Goudas
,
I.
,
2000
, “
Dynamic Analysis of Piecewise Linear Oscillators With Time Periodic Coefficients
,”
Int. J. Non-Linear Mech.
,
35
(
1
), pp.
53
68
.10.1016/S0020-7462(98)00087-0
32.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.10.1016/0022-460X(90)90582-K
33.
Shen
,
Y. J.
,
Yang
,
S. P.
,
Xing
,
H. J.
, and
Ma
,
H.
,
2012
, “
Primary Resonance of Duffing Oscillator With Two Kinds of Fractional-Order Derivatives
,”
Int. J. Non-Linear Mech.
,
47
(
9
), pp.
975
983
.10.1016/j.ijnonlinmec.2012.06.012
34.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.10.1115/1.3157762
35.
Petráš
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Higher Education Press
, Beijing, China.
36.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
37.
Tian
,
X. H.
,
2004
, “
Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults
,” M.S. thesis,
University of Alberta
,
Canada
.
38.
Hou
,
J. Y.
,
Yang
,
S. P.
,
Li
,
Q.
, and
Liu
,
Y. Q.
,
2020
, “
Nonlinear Dynamic Analysis of Spur Gear System Based on Fractional-Order Calculus
,”
Mod. Phys. Lett. B
,
34
(
36
), p.
2050420
.10.1142/S0217984920504205
You do not currently have access to this content.