Abstract

The accuracy of a multibody model to predict the behavior of a real physical system depends heavily on the correct choice of model parameters. Identifying unknown system parameters that cannot be computed or measured directly is usually time-consuming and costly. If measurement data is available for the physical system, the parameters in the corresponding mathematical model can be determined by minimizing the error between the model response and the measurement data using optimization methods. While there is a wide range of optimization methods available, genetic optimization is a more generic approach for finding optimal solutions to complex engineering problems. So far, however, there is no general approach on how to use genetic optimization to determine unknown system parameters automatically—which is, however, of great importance when dealing with real flexible multibody systems. In this paper, we present a methodology to automatically determine several unknown system parameters of a complex flexible multibody system using genetic optimization. The proposed methodology is demonstrated using a small-scale test problem and a real flexible rotor excited with impacts. Experiments were performed on the physical rotor to obtain measurement data which is used to identify bearing and support stiffness and damping parameters as well as the impact force.

References

1.
Schiehlen
,
W.
,
2006
, “
Computational Dynamics: Theory and Applicationsof Multibody Systems
,”
Eur. J. Mech. - A/Solids
,
25
(
4
), pp.
566
594
.10.1016/j.euromechsol.2006.03.004
2.
Vyasarayani
,
C.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Multibody Systems Using Lie Series Solutions and Symbolic Computation
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p. 041011.10.1115/1.4003686
3.
Uchida
,
T.
,
Vyasarayani
,
C. P.
,
Smart
,
M.
, and
McPhee
,
J.
,
2014
, “
Parameter Identification for Multibody Systems Expressed in Differential-Algebraic Form
,”
Multibody Syst. Dyn.
,
31
(
4
), pp.
393
403
.10.1007/s11044-013-9390-7
4.
Held
,
A.
, and
Seifried
,
R.
,
2013
, “
Gradient-Based Optimization of Flexible Multibodysystems Using the Absolute Nodal Coordinate Formulation
,”
Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2013
, Zagreb, Croatia, 1–4 July, pp.
1
8
.
5.
Chaudhary
,
K.
, and
Chaudhary
,
H.
,
2015
, “
Optimal Design of Planar Slider-Crank Mechanism Using Teaching-Learning-Based Optimization Algorithm
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5189
5198
.10.1007/s12206-015-1119-5
6.
Hardeman
,
T.
,
Aarts
,
R.
, and
Jonker
,
J.
,
2006
, “
A Finite Element Formulation for Dynamic Parameter Identification of Robot Manipulators
,”
Multibody Syst. Dyn.
,
16
(
1
), pp.
21
35
.10.1007/s11044-006-9010-x
7.
Eder
,
R.
, and
Gerstmayr
,
J.
,
2014
, “
Special Genetic Identification Algorithm With Smoothing in the Frequency Domain
,”
Adv. Eng. Software
,
70
, pp.
113
122
.10.1016/j.advengsoft.2014.01.008
8.
Ding
,
J.-Y.
,
Pan
,
Z.-K.
, and
Chen
,
L.-Q.
,
2012
, “
Parameter Identification of Multibody Systems Based on Second Order Sensitivity Analysis
,”
Int. J. Non-Linear Mech.
,
47
(
10
), pp.
1105
1110
.10.1016/j.ijnonlinmec.2011.09.009
9.
Schiehlen
,
W.
, and
Hu
,
B.
,
1999
, “
Parameter Identification and Nonlinear Multi-Body Systems Using Correlation Techniques
,”
IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics
, Madras, Chennai, India, Jan. 4–8,
S.
Narayanan
and
R. N.
Iyengar
, eds., pp.
261
270
.
10.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2001
,
Introduction to Linear Regression Analysis
, 3rd ed.,
Wiley
,
New York
.
11.
Söderström
,
T.
, and
Stoica
,
P.
,
1989
,
System Identification
,
Prentice Hall
,
Cambridge
.
12.
Blanchard
,
E. D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
J. Dyn. Sys., Meas., Control.
,
132
(
6
), p.
061404
.10.1115/1.4002481
13.
Vyasarayani
,
C. P.
,
Uchida
,
T.
,
Carvalho
,
A.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach
,”
Multibody Syst. Dyn.
,
26
(
4
), pp.
411
424
.10.1007/s11044-011-9260-0
14.
Baumgarte
,
W.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
15.
Blajer
,
W.
,
2002
, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
3
), pp.
265
284
.10.1023/A:1015285428885
16.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2015
, “
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
10
.10.1115/1.4028417
17.
Sherif
,
K.
,
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
, and
Steiner
,
W.
,
2015
, “
An Efficient Treatment of Parameter Identification in the Context of Multibody System Dynamics Using the Adjoint Method
,”
Topics in Modal Analysis
,
M.
Mains
, ed.,
Springer International Publishing
, New York, Vol.,
10
, pp.
1
8
.
18.
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Steiner
,
W.
, and
Nachbagauer
,
K.
,
2018
, “
The Discrete Adjoint Method for Parameter Identification in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
42
(
4
), pp.
397
410
.10.1007/s11044-017-9600-9
19.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
20.
Oberpeilsteiner
,
S.
,
Lauss
,
T.
,
Steiner
,
W.
, and
Nachbagauer
,
K.
,
2018
, “
A Frequency Domain Approach for Parameter Identification in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
43
(
2
), pp.
175
191
.10.1007/s11044-017-9596-1
21.
Begambre
,
O.
, and
Laier
,
J. E.
,
2009
, “
A Hybrid Particle Swarm Optimization - Simplex Algorithm (PSOS) for Structural Damage Identification
,”
Adv. Eng. Software
,
40
(
9
), pp.
883
891
.10.1016/j.advengsoft.2009.01.004
22.
Goldberg
,
D.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
23.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1007/BF00175354
24.
Nelder
,
J.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
25.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
2020
, “
Author Correction: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
352
352
.10.1038/s41592-020-0772-5
26.
Holzinger
,
S.
,
Schieferle
,
M.
,
Gerstmayr
,
J.
,
Hofer
,
M.
, and
Gutmann
,
C.
,
2021
, “
Modelling and Parameter Identification for a Flexible Rotor With Periodic Impacts
,”
ASME
Paper No. IDETC/CIE2021.10.1115/IDETC/CIE2021
27.
Gerstmayr
,
J.
,
2021
, “
EXUDYN – Flexible Multibody Dynamics Systems With Python and C++
,” https://github.com/jgerstmayr/EXUDYN (Exudyn version: 1.0.276; accessed on March 4, 2021).
28.
Zwölfer
,
A.
, and
Gerstmayr
,
J.
,
2020
, “
A Concise Nodal-Based Derivation of the Floating Frame of Reference Formulation for Displacement-Based Solid Finite Elements
,”
Multibody Syst. Dyn.
,
49
(
3
), pp.
291
313
.10.1007/s11044-019-09716-x
29.
Zwölfer
,
A.
, and
Gerstmayr
,
J.
,
2021
, “
The Nodal-Based Floating Frame of Reference Formulation With Modal Reduction
,”
Acta Mech.
,
232
(
3
), pp.
835
851
.10.1007/s00707-020-02886-2
30.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University Press
, Cambridge, UK.
31.
Schwertassek
,
R.
, and
Wallrapp
,
O.
,
1999
, “
Dynamik Flexibler Mehrkörpersysteme
,”
Methoden Der Mechanik Zum Rechnergestützten Entwurf Und Zur Analyse Mechatronischer Systeme
,
Vieweg+Teubner Verlag
,
New York
.
32.
ANSYS
,
2021
, Mechanical 2021 R1.
33.
Solgi
,
R.
,
2021
, “
Geneticalgorithm
,” accessed Sept. 28, 2021, https://github.com/rmsolgi/geneticalgorithm
34.
Fortin
,
F.-A.
,
De Rainville
,
F.-M.
,
Gardner
,
M. A.
,
Parizeau
,
M.
, and
Gagne
,
C.
,
2012
, “
DEAP: Evolutionary Algorithms Made Easy
,”
J. Mach. Learn. Res.
,
13
, pp.
2171
2175
.https://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf
35.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
(
3
), pp.
461
487
.10.1016/j.jsv.2008.04.019
36.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
37.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.10.1021/ac60214a047
You do not currently have access to this content.