Abstract

In this paper, the robustness of a recently validated linearization approach is demonstrated with the linear stability analysis of a waveboard, a human-propelled two-wheeled vehicle consisting in two rotatable platforms, joined by a torsion bar and supported on two caster wheels. A multibody model with holonomic and nonholonomic constraints is used to describe the system. The nonlinear equations of motion, which constitute a differential-algebraic system of equations (DAE system), are linearized along the steady forward motion. With this approach, the minimal set of linearized equations of motion of the waveboard multibody model with toroidal wheels is derived. The procedure enables the generation of the Jacobian matrix in terms of the geometric and dynamic parameters of the multibody system, and the eigenvalues of the system are parameterized in terms of the design parameters. The resulting minimum set of linear equations leads to the elimination of null eigenvalues, while retaining all the stability information in spite of the reduction of the Jacobian matrix. The linear stability results of the waveboard obtained in previous work are validated with this approach. The procedure shows an excellent computational efficiency with the waveboard, its utilization being highly advisable to linearize the equations of motion of complex constrained multibody systems.

References

1.
García-Agúndez
,
A.
,
García-Vallejo
,
D.
, and
Freire
,
E.
,
2021
, “
Linearization Approaches for General Multibody Systems Validated Through Stability Analysis of a Benchmark Bicycle Model
,”
Nonlinear Dyn.
,
103
(
1
), pp.
557
580
.10.1007/s11071-020-06069-5
2.
Meijaard
,
J. P.
,
Papadopoulos
,
J. M.
,
Ruina
,
A.
, and
Schwab
,
A. L.
,
2007
, “
Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
463
(
2084
), pp.
1955
1982
.10.1098/rspa.2007.1857
3.
Escalona
,
J. L.
, and
Chamorro
,
R.
,
2008
, “
Stability Analysis of Vehicles on Circular Motions Using Multibody Dynamics
,”
Nonlinear Dyn.
,
53
(
3
), pp.
237
250
.10.1007/s11071-007-9311-5
4.
Peterson
,
D. L.
,
Gede
,
G.
, and
Hubbard
,
M.
,
2015
, “
Symbolic Linearization of Equations of Motion of Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
33
(
2
), pp.
143
161
.10.1007/s11044-014-9436-5
5.
González
,
F.
,
Masarati
,
P.
,
Cuadrado
,
J.
, and
Naya
,
M. A.
,
2017
, “
Assessment of Linearization Approaches for Multibody Dynamics Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p. 041009.10.1115/1.4035410
6.
Van Khang
,
N.
,
Nam
,
N. S.
, and
Van Quyen
,
N.
,
2018
, “
Symbolic Linearization and Vibration Analysis of Constrained Multibody Systems
,”
Arch. Appl. Mech.
,
88
(
8
), pp.
1369
1384
.10.1007/s00419-018-1376-8
7.
Pappalardo
,
C. M.
,
Lettieri
,
A.
, and
Guida
,
D.
,
2020
, “
Stability Analysis of Rigid Multibody Mechanical Systems With Holonomic and Nonholonomic Constraints
,”
Arch. Appl. Mech.
,
90
(
9
), pp.
1961
2005
.10.1007/s00419-020-01706-2
8.
Sharp
,
R. S.
,
1971
, “
The Stability and Control of Motorcycles
,”
J. Mech. Eng. Sci.
,
13
(
5
), pp.
316
329
.10.1243/JMES_JOUR_1971_013_051_02
9.
Sharp
,
R. S.
,
2001
, “
Stability, Control and Steering Responses of Motorcycles
,”
Veh. System Dyn.
,
35
(
4–5
), pp.
291
318
.10.1076/vesd.35.4.291.2042
10.
Sharp
,
R. S.
, and
Limebeer
,
D. J.
,
2001
, “
A Motorcycle Model for Stability and Control Analysis
,”
Multibody Syst. Dyn.
,
6
(
2
), pp.
123
142
.10.1023/A:1017508214101
11.
Basu-Mandal
,
P.
,
Chatterjee
,
A.
, and
Papadopoulos
,
J. M.
,
2007
, “
Hands-Free Circular Motions of a Benchmark Bicycle
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
463
(
2084
), pp.
1983
2003
.10.1098/rspa.2007.1849
12.
Escalona
,
J. L.
, and
Recuero
,
A. M.
,
2012
, “
A Bicycle Model for Education in Multibody Dynamics and Real-Time Interactive Simulation
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
383
402
.10.1007/s11044-011-9282-7
13.
Han
,
S.
, and
Bauchau
,
O. A.
,
2020
, “
Simulation and Stability Analysis of Periodic Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
50
(
4
), pp.
381
413
.10.1007/s11044-020-09741-1
14.
Pappalardo
,
C. M.
,
Lettieri
,
A.
, and
Guida
,
D.
,
2020
, “
A General Multibody Approach for the Linear and Nonlinear Stability Analysis of Bicycle Systems. Part I: Methods of Constrained Dynamics
,”
J. Appl. Comput. Mech.
, 7(2), pp.
655
670
.https://iranjournals.nlai.ir/handle/123456789/741118
15.
Pappalardo
,
C. M.
,
Lettieri
,
A.
, and
Guida
,
D.
,
2021
, “
A General Multibody Approach for the Linear and Nonlinear Stability Analysis of Bicycle Systems. Part II: Application to the Whipple-Carvallo Bicycle Model
,”
J. Appl. Comput. Mech.
,
7
(
2
), pp.
671
700
.10.22055/JACM.2020.35439.2654
16.
Xiong
,
J.
,
Wang
,
N.
, and
Liu
,
C.
,
2020
, “
Stability Analysis for the Whipple Bicycle Dynamics
,”
Multibody Syst. Dyn.
,
48
(
3
), pp.
311
335
.10.1007/s11044-019-09707-y
17.
Xiong
,
J.
,
Wang
,
N.
, and
Liu
,
C.
,
2020
, “
Bicycle Dynamics and Its Circular Solution on a Revolution Surface
,”
Acta Mech. Sin.
,
36
(
1
), pp.
220
233
.10.1007/s10409-019-00914-6
18.
Agúndez
,
A.
,
García-Vallejo
,
D.
, and
Freire
,
E.
,
2021
, “
Linear Stability Analysis of Nonholonomic Multibody Systems
,”
Int. J. Mech. Sci.
,
198
, p.
106392
.10.1016/j.ijmecsci.2021.106392
19.
Ostrowski
,
J.
,
Lewis
,
A.
,
Murray
,
R.
, and
Burdick
,
J.
,
1994
, “
Nonholonomic Mechanics and Locomotion: The Snakeboard Example
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
IEEE
, San Diego, CA, May 8–13, pp.
2391
2397
.10.1109/ROBOT.1994.351153
20.
Shammas
,
E.
, and
de Oliveira
,
M.
,
2012
, “
An Analytic Motion Planning Solution for the Snakeboard
,”
Robotics: Science and Systems (RSS)
,
MIT Press
,
Cambridge, MA
, p.
297
.
21.
Dear
,
T.
,
Kelly
,
S. D.
,
Travers
,
M.
, and
Choset
,
H.
,
2015
, “
Snakeboard Motion Planning With Viscous Friction and Skidding
,” IEEE International Conference on Robotics and Automation (
ICRA
),
IEEE
, Seattle, WA, May 26–30, pp.
670
675
.10.1109/ICRA.2015.7139251
22.
Ostrowski
,
J. P.
,
Desai
,
J. P.
, and
Kumar
,
V.
,
2000
, “
Optimal Gait Selection for Nonholonomic Locomotion Systems
,”
Int. J. Rob. Res.
,
19
(
3
), pp.
225
237
.10.1177/02783640022066833
23.
Kuleshov
,
A. S.
,
2007
, “
Further Development of the Mathematical Model of a Snakeboard
,”
Regular Chaotic Dyn.
,
12
(
3
), pp.
321
334
.10.1134/S1560354707030045
24.
Kinugasa
,
K.
,
Ishikawa
,
M.
,
Sugimoto
,
Y.
, and
Osuka
,
K.
,
2013
, “
Modeling and Control of Casterboard Robot
,”
IFAC Proc. Vols.
,
46
(
23
), pp.
785
790
.10.3182/20130904-3-FR-2041.00063
25.
Agrawal
,
A.
,
Zaini
,
H. M.
,
Dear
,
T.
, and
Choset
,
H.
,
2016
, “
Experimental Gait Analysis of Waveboard Locomotion
,”
ASME
Paper No. DSCC2016-9923.10.1115/DSCC2016-9923
26.
Su
,
B.
,
Wang
,
T.
,
Wang
,
J.
, and
Kuang
,
S.
,
2013
, “
Kinematic Mechanism and Path Planning of the Essboard
,”
Sci. China Technol. Sci.
,
56
(
6
), pp.
1499
1516
.10.1007/s11431-013-5212-7
27.
Wang
,
T.
,
Su
,
B.
,
Kuang
,
S.
, and
Wang
,
J.
,
2013
, “
On Kinematic Mechanism of a Two-Wheel Skateboard: The Essboard
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
034503
.10.1115/1.4024240
28.
Zeng
,
Z.
,
Chen
,
D.
,
Zhang
,
T.
, and
Guan
,
Y.
,
2018
, “
Kinematic Modelling and Analysis of an Ess-Board-Like Robot
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
),
IEEE
, Kuala Lumpur, Malaysia, Dec. 12–15, pp.
1371
1376
.10.1109/ROBIO.2018.8664835
29.
Gadzhiev
,
M.
,
Kuleshov
,
A.
, and
Bukanov
,
A.
,
2020
, “
Geometric Constraints in the Problem of Motion of a Caster Board
,”
J. Math. Sci.
,
248
(
4
), pp.
392
396
.10.1007/s10958-020-04879-x
30.
Ito
,
S.
,
Niwa
,
K.
,
Sugiura
,
S.
, and
Morita
,
R.
,
2019
, “
An Autonomous Mobile Robot With Passive Wheels Propelled by a Single Motor
,”
Rob. Auton. Syst.
,
122
, p.
103310
.10.1016/j.robot.2019.103310
31.
Ito
,
S.
,
Sugiura
,
S.
,
Masuda
,
Y.
,
Nohara
,
S.
, and
Morita
,
R.
,
2020
, “
Mechanism and Control of a One-Actuator Mobile Robot Incorporating a Torque Limiter
,”
J. Intell. Rob. Syst.
,
97
(
2
), pp.
431
448
.10.1007/s10846-019-01036-8
32.
Fukai
,
R.
,
Yagi
,
K.
, and
Mori
,
Y.
,
2020
, “
Dynamic Model for Using Casterboard by a Humanoid Robot
,”
Adv. Rob.
,
34
(
10
), pp.
648
660
.10.1080/01691864.2020.1749725
33.
García-Agúndez
,
A.
,
García-Vallejo
,
D.
, and
Freire
,
E.
,
2020
, “
Study of the Forward Locomotion of a Three-Dimensional Multibody Model of a Waveboard by Inverse Dynamics
,”
Mech. Mach. Theory
,
149
, p.
103826
.10.1016/j.mechmachtheory.2020.103826
34.
DasGupta
,
A.
,
2020
, “
Dynamics of a Waveboard Simplified
,”
Proc. R. Soc. A
,
476
(
2244
), p.
20200486
.10.1098/rspa.2020.0486
35.
Agúndez
,
A. G.
,
García-Vallejo
,
D.
,
Freire
,
E.
, and
Mikkola
,
A.
,
2021
, “
Stability Analysis of a Waveboard Multibody Model With Toroidal Wheels
,”
Multibody Syst. Dyn.
, 53, pp.
173
203
.10.1007/s11044-021-09780-2
36.
Shabana
,
A. A.
, and
Sany
,
J. R.
,
2001
, “
An Augmented Formulation for Mechanical Systems With Non-Generalized Coordinates: Application to Rigid Body Contact Problems
,”
Nonlinear Dyn.
,
24
(
2
), pp.
183
204
.10.1023/A:1008362309558
37.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
You do not currently have access to this content.