Abstract

As a result of the increasing system complexity and more strict performance requirements, intelligent and robust decision-making and control capabilities are of great importance for future automotive propulsion systems. Due to the significant uncertainties from both unavoidable modeling errors and probabilistic environmental disturbances, the ability to quantify the effect of these uncertainties on system behaviors plays a crucial role in enabling advanced control designs in the future for propulsion systems. However, quantifying uncertainties in complex nonlinear systems can cause significant computational burdens. Given the limited computing power on-board a vehicle, developing algorithms with high enough efficiency to quantify uncertainties in automotive propulsion systems in real-time is a major challenge. Traditional uncertainty quantification methods for complicated nonlinear systems, such as Monte Carlo, often rely on sampling — a computationally prohibitive process in many applications. Previous research has shown promises in using spectral decomposition methods such as generalized polynomial chaos to reduce the online computational cost of uncertainty quantification. However, such method suffers from poor scalability and bias issues. In this article, we seek to alleviate these computational bottlenecks by using a multifidelity approach that utilizes Control Variate to combine generalized polynomial chaos with Monte Carlo. Results on the mean, variance, and skewness estimations of vehicle axle shaft torque show that the proposed method corrects the bias caused by Polynomial Chaos expansions while significantly reducing the overall estimator variance compared to that of a conventional Monte Carlo estimator.

References

1.
Fathy
,
H. K.
,
Filipi
,
Z. S.
,
Hagena
,
J.
, and
Stein
,
J. L.
,
2006
, “
Review of Hardware-in-the-Loop Simulation and Its Prospects in the Automotive Area
,”
Modeling and Simulation for Military Applications
, Vol. 6228,
International Society for Optics and Photonics
, Orlando, FL, May, p.
62280E
.10.1117/12.667794
2.
Wang
,
L.
,
Zhang
,
Y.
,
Yin
,
C.
,
Zhang
,
H.
, and
Wang
,
C.
,
2012
, “
Hardware-in-the-Loop Simulation for the Design and Verification of the Control System of a Series–Parallel Hybrid Electric City-Bus
,”
Simul. Modell. Pract. Theory
,
25
, pp.
148
162
.10.1016/j.simpat.2012.02.010
3.
Bachinger
,
M.
,
Stolz
,
M.
, and
Horn
,
M.
,
2015
, “
A Novel Drivetrain Modelling Approach for Real-Time Simulation
,”
Mechatronics
,
32
, pp.
67
78
.10.1016/j.mechatronics.2015.10.006
4.
Shui
,
H.
,
Zhang
,
Y.
,
Yang
,
H.
,
Upadhyay
,
D.
, and
Fujii
,
Y.
,
2021
, “
Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function
,”
SAE
Paper No. 2021-01-0712.10.4271/2021-01-0712
5.
Yang
,
H.
,
Kidambi
,
N.
,
Fujii
,
Y.
,
Gorodetsky
,
A.
, and
Wang
,
K. W.
,
2020
, “
Uncertainty Quantification Using Generalized Polynomial Chaos for Online Simulations of Automotive Propulsion Systems
,” 2020 American Control Conference (
ACC
),
IEEE
, Denver, CO, July 1–3, pp.
295
300
.10.23919/ACC45564.2020.9147870
6.
Yang
,
H.
,
Kidambi
,
N.
,
Wang
,
K. W.
,
Pietron
,
G. M.
,
Hippalgaonkar
,
R.
, and
Fujii
,
Y.
,
2019
, “
Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations
,”
SAE
Paper No. 2019-01-0347.10.4271/2019-01-0347
7.
Robert
,
C.
, and
Casella
,
G.
,
2013
,
Monte Carlo Statistical Methods
,
Springer Science & Business Media
, New York.
8.
Giles
,
M. B.
,
2015
, “
Multilevel Monte Carlo Methods
,”
Acta Numer.
,
24
, pp.
259
328
.10.1017/S096249291500001X
9.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
,
1986
, “
Probabilistic Finite Elements for Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
56
(
1
), pp.
61
81
.10.1016/0045-7825(86)90136-2
10.
Yamazaki
,
F.
,
Member
,
A.
,
Shinozuka
,
M.
, and
Dasgupta
,
G.
,
1988
, “
Neumann Expansion for Stochastic Finite Element Analysis
,”
J. Eng. Mech.
,
114
(
8
), pp.
1335
1354
.10.1061/(ASCE)0733-9399(1988)114:8(1335)
11.
Falsone
,
G.
, and
Settineri
,
D.
,
2013
, “
Explicit Solutions for the Response Probability Density Function of Nonlinear Transformations of Static Random Inputs
,”
Probab. Eng. Mech.
,
33
, pp.
79
85
.10.1016/j.probengmech.2013.03.003
12.
Falsone
,
G.
, and
Laudani
,
R.
,
2018
, “
A Probability Transformation Method (Ptm) for the Dynamic Stochastic Response of Structures With Non-Gaussian Excitations
,”
Eng. Comput.
,
35
(
5
), pp.
1978
1997
.10.1108/EC-12-2017-0518
13.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
14.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
, Princeton, NJ.
15.
Ghanem
,
R.
,
Higdon
,
D.
, and
Owhadi
,
H.
,
2017
,
Handbook of Uncertainty Quantification
, Vol. 6,
Springer
, Cham, Switzerland.
16.
Ernst
,
O. G.
,
Mugler
,
A.
,
Starkloff
,
H.-J.
, and
Ullmann
,
E.
,
2012
, “
On the Convergence of Generalized Polynomial Chaos Expansions
,”
ESAIM: Math. Modell. Numer. Anal.
,
46
(
2
), pp.
317
339
.10.1051/m2an/2011045
17.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2009
, “
Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty
,”
Eng. Comput.
,
26
(
5
), pp.
541
569
.10.1108/02644400910970185
18.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2011
, “
Recursive Maximum Likelihood Parameter Estimation for State Space Systems Using Polynomial Chaos Theory
,”
Automatica
,
47
(
11
), pp.
2420
2424
.10.1016/j.automatica.2011.08.014
19.
Bavdekar
,
V. A.
, and
Mesbah
,
A.
,
2016
, “
A Polynomial Chaos-Based Nonlinear Bayesian Approach for Estimating State and Parameter Probability Distribution Functions
,” In 2016 American Control Conference (
ACC
), Boston, MA, July,
IEEE
, pp.
2047
2052
.10.1109/ACC.2016.7525220
20.
Yan
,
L.
, and
Zhou
,
T.
,
2019
, “
Adaptive Multi-Fidelity Polynomial Chaos Approach to Bayesian Inference in Inverse Problems
,”
J. Comput. Phys.
,
381
, pp.
110
128
.10.1016/j.jcp.2018.12.025
21.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2006
, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
,
42
(
5
), pp.
789
795
.10.1016/j.automatica.2006.01.010
22.
Fagiano
,
L.
, and
Khammash
,
M.
,
2012
, “
Nonlinear Stochastic Model Predictive Control Via Regularized Polynomial Chaos Expansions
,” 2012 IEEE 51st IEEE Conf. Decis. Control (
CDC
), Maui, HI, Dec. 10–13,
IEEE
, pp.
142
147
.10.1109/CDC.2012.6425919
23.
Bavdekar
,
V. A.
, and
Mesbah
,
A.
,
2016
, “
Stochastic Nonlinear Model Predictive Control With Joint Chance Constraints
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
270
275
.10.1016/j.ifacol.2016.10.176
24.
Paulson
,
J. A.
, and
Mesbah
,
A.
,
2019
, “
An Efficient Method for Stochastic Optimal Control With Joint Chance Constraints for Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
29
(
15
), pp.
5017
5037
.10.1002/rnc.3999
25.
Dammak
,
K.
,
El Hami
,
A.
,
Koubaa
,
S.
,
Walha
,
L.
, and
Haddar
,
M.
,
2017
, “
Reliability Based Design Optimization of Coupled Acoustic-Structure System Using Generalized Polynomial Chaos
,”
Int. J. Mech. Sci.
,
134
, pp.
75
84
.10.1016/j.ijmecsci.2017.10.003
26.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.10.1007/s00158-010-0568-9
27.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. System Safety
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
28.
Crestaux
,
T.
,
Le Maıtre
,
O.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.10.1016/j.ress.2008.10.008
29.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.10.1007/s11044-006-9007-5
30.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.10.1007/s11044-006-9008-4
31.
Xu
,
Y.
,
Mili
,
L.
,
Sandu
,
A.
,
von Spakovsky
,
M. R.
, and
Zhao
,
J.
,
2019
, “
Propagating Uncertainty in Power System Dynamic Simulations Using Polynomial Chaos
,”
IEEE Trans. Power Syst.
,
34
(
1
), pp.
338
348
.10.1109/TPWRS.2018.2865548
32.
Kewlani
,
G.
,
Crawford
,
J.
, and
Iagnemma
,
K.
,
2012
, “
A Polynomial Chaos Approach to the Analysis of Vehicle Dynamics Under Uncertainty
,”
Veh. System Dyn.
,
50
(
5
), pp.
749
774
.10.1080/00423114.2011.639897
33.
Ng
,
L. W.-T.
,
2013
, “
Multifidelity Approaches for Design Under Uncertainty
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
34.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
35.
Geraci
,
G.
,
Eldred
,
M. S.
, and
Iaccarino
,
G.
,
2017
, “
A Multifidelity Multilevel Monte Carlo Method for Uncertainty Propagation in Aerospace Applications
,”
19th AIAA Non-Deterministic Approaches Conference
, Grapevine, TX, Jan., p.
1951
.10.2514/6.2017-1951
36.
Goh
,
J.
,
Bingham
,
D.
,
Holloway
,
J. P.
,
Grosskopf
,
M. J.
,
Kuranz
,
C. C.
, and
Rutter
,
E.
,
2013
, “
Prediction and Computer Model Calibration Using Outputs From Multifidelity Simulators
,”
Technometrics
,
55
(
4
), pp.
501
512
.10.1080/00401706.2013.838910
37.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2016
, “
Optimal Model Management for Multifidelity Monte Carlo Estimation
,”
SIAM J. Sci. Comput.
,
38
(
5
), pp.
A3163
A3194
.10.1137/15M1046472
38.
Lavenberg
,
S. S.
, and
Welch
,
P. D.
,
1981
, “
A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations
,”
Manage. Sci.
,
27
(
3
), pp.
322
335
.10.1287/mnsc.27.3.322
39.
Nelson
,
B. L.
,
1987
, “
On Control Variate Estimators
,”
Comput. Oper. Res.
,
14
(
3
), pp.
219
225
.10.1016/0305-0548(87)90024-4
40.
Emsermann
,
M.
, and
Simon
,
B.
,
2002
, “
Improving Simulation Efficiency With Quasi Control Variates
,”
Stochastic Models
,18(3), pp.
425
448
.10.1081/STM-120014220
41.
Geraci
,
G.
,
Eldred
,
M.
, and
Iaccarino
,
G.
,
2015
, “
A Multifidelity Control Variate Approach for the Multilevel Monte Carlo Technique
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
169
181
.
42.
Geraci
,
G.
,
Eldred
,
M. S.
,
Gorodetsky
,
A.
, and
Jakeman
,
J.
,
2019
, “
Recent Advancements in Multilevel-Multifidelity Techniques for Forward UQ in the Darpa Sequoia Project
,” In
AIAA
Scitech 2019 Forum, San Diego, CA, Jan., p.
0722
.10.2514/6.2019-0722
43.
Gorodetsky
,
A. A.
,
Geraci
,
G.
,
Eldred
,
M. S.
, and
Jakeman
,
J. D.
,
2020
, “
A Generalized Approximate Control Variate Framework for Multifidelity Uncertainty Quantification
,”
J. Comput. Phys.
,
408
, p.
109257
.10.1016/j.jcp.2020.109257
44.
Garg
,
S.
,
Sood
,
N.
, and
Sarris
,
C. D.
,
2015
, “
Uncertainty Quantification of Ray-Tracing Based Wireless Propagation Models With a Control Variate-Polynomial Chaos Expansion Method
,”
2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
, Vancouver, BC, Canada, July 19–24,
IEEE
, pp.
1776
1777
.10.1109/APS.2015.7305277
45.
Gu
,
Z.
, and
Sarris
,
C. D.
,
2015
, “
Multi-Parametric Uncertainty Quantification With a Hybrid Monte Carlo/Polynomial Chaos Expansion FDTD Method
,”
2015 IEEE MTT-S International Microwave Symposium
, Phoenix, AZ, May 17–22,
IEEE
, pp.
1
3
.10.1109/MWSYM.2015.7166881
46.
Fox
,
J.
,
2020
, “
Applications of Polynomial Chaos to Monte Carlo Simulation
,” Ph.D. thesis,
The Florida State University
, Tallahassee, FL.
47.
Hrovat
,
D.
, and
Tobler
,
W.
,
1985
, “
Bond Graph Modeling and Computer Simulation of Automotive Torque Converters
,”
J. Franklin Institute
,
319
(
1–2
), pp.
93
114
.10.1016/0016-0032(85)90067-5
48.
Kotwicki
,
A. J.
,
1982
, “
Dynamic Models for Torque Converter Equipped Vehicles
,”
SAE Trans.
, Electronic Engine Management and Driveline Controls-P-104, SAE 1982 Transactions-V91-A, pp.
1595
1609
.
49.
Fujii
,
Y.
,
Kapas
,
N.
, and
Tseng
,
J.-W.
,
2014
, “
Clutch Wet
,”
Encyclopedia Automot. Eng.
, pp.
1
15
.
50.
Sudret
,
B.
,
Berveiller
,
M.
, and
Lemaire
,
M.
,
2006
, “
A Stochastic Finite Element Procedure for Moment and Reliability Analysis
,”
Eur. J. Comput. Mech.
,
15
(
7–8
), pp.
825
866
.10.3166/remn.15.825-866
51.
Sudret
,
B.
,
2014
, “
Polynomial Chaos Expansions and Stochastic Finite Element Methods
,”
Risk Reliability Geotech. Eng.
, 15, pp. 2
65
300
.
You do not currently have access to this content.