Abstract

The fuel optimization of the spacecraft is significant for its service life. In this paper, a fuel optimization method is proposed to solve the fuel optimization problem of the pursuer in the spacecraft pursuit-evasion game (SPE game). This method first takes both the magnitude and direction of the pursuer's thrust as the control variables to be optimized, then models the fuel optimization problem as a two-player zero-sum differential game whose payoff function is the fuel consumption of the pursuer, and finally obtains the optimal control strategy of the pursuer by solving the saddle point of the differential game. Considering that the solving of the saddle point usually leads to the solving of a high-dimensional (12-dimensional in this paper) two-point boundary value problem (TPBVP), which is very challenging, the proposed method adopts a dimension-reduction algorithm which can simplify the TPBVP to the solving of a four-dimensional nonlinear equations and a terminal constraint, and then presents an hybrid numerical algorithm combining the particle swarm optimization algorithm and the Powell algorithm to solve the nonlinear equations and terminal constraint. The simulation results show that the proposed method can achieve the fuel optimization of the pursuer in the SPE game and is robust to the orbital altitude, the initial relative state between the pursuer and evader and the magnitude of the evader's thrust.

References

1.
Flores-Abad
,
A.
,
Ma
,
O.
,
Pham
,
K.
, and
Ulrich
,
S.
,
2014
, “
A Review of Space Robotics Technologies for On-Orbit Servicing
,”
Prog. Aeosp. Sci.
,
68
, pp.
1
26
.10.1016/j.paerosci.2014.03.002
2.
Shen
,
H. X.
, and
Casalino
,
L.
,
2018
, “
Revisit of the Three-Dimensional Orbital Pursuit-Evasion Game
,”
J. Guid. Control Dyn.
,
41
(
8
), pp.
1823
1831
.10.2514/1.G003127
3.
Venigalla
,
C.
, and
Scheeres
,
D. J.
,
2018
, “
Spacecraft Rendezvous and Pursuit/Evasion Analysis Using Reachable Sets
,”
AIAA
Paper No. 2018-0219.10.2514/6.2018-0219
4.
Jagat
,
A.
, and
Sinclair
,
A. J.
,
2017
, “
Nonlinear Control for Spacecraft Pursuit-Evasion Game Using the State-Dependent Riccati Equation Method
,”
IEEE Trans. Aerosp. Electron. Syst.
,
53
(
6
), pp.
3032
3042
.10.1109/TAES.2017.2725498
5.
Woodbury
,
T.
, and
Hurtado
,
J. E.
,
2017
, “
Adaptive Play Via Estimation in Uncertain Nonzero-Sum Orbital Pursuit-Evasion Games
,”
AIAA
Paper No. 2017-5247.10.2514/6.2017-5247
6.
Hafer
,
W. T.
, and
Reed
,
H. L.
,
2015
, “
Orbital Pursuit-Evasion Hybrid Spacecraft Controllers
,”
AIAA
Paper No. 2015-2000.10.2514/6.2015-2000
7.
Isaacs
,
R.
,
1965
,
Differential Games
,
Wiley
,
New York
.
8.
Ye
,
D.
,
Shi
,
M. M.
, and
Sun
,
Z. W.
,
2020
, “
Satellite Proximate Pursuit-Evasion Game With Different Thrust Configurations
,”
Aerosp. Sci. Technol.
,
99
, p.
105715
.10.1016/j.ast.2020.105715
9.
Pontani
,
M.
, and
Conway
,
B. A.
,
2009
, “
Numerical Solution of the Three-Dimensional Orbital Pursuit-Evasion Game
,”
J. Guid. Control Dyn.
,
32
(
2
), pp.
474
487
.10.2514/1.37962
10.
Liang
,
H. Z.
,
Wang
,
J. Y.
,
Liu
,
J. Q.
, and
Liu
,
P.
,
2020
, “
Guidance Strategies for Interceptor Against Active Defense Spacecraft in Two-On-Two Engagement
,”
Aerosp. Sci. Technol.
,
96
, p.
105529
.10.1016/j.ast.2019.105529
11.
Lin
,
W.
,
2014
, “
Distributed UAV Formation Control Using Differential Game Approach
,”
Aerosp. Sci. Technol.
,
35
, pp.
54
62
.10.1016/j.ast.2014.02.004
12.
Liu
,
F.
,
Dong
,
X. W.
,
Li
,
Q. D.
, and
Ren
,
Z.
,
2021
, “
Robust Multi-Agent Differential Games With Application to Cooperative Guidance
,”
Aerosp. Sci. Technol.
,
111
, p.
106568
.10.1016/j.ast.2021.106568
13.
Chai
,
Y.
,
Luo
,
J. J.
,
Han
,
N.
, and
Sun
,
J.
,
2020
, “
Robust Event-Triggered Game-Based Attitude Control for On-Orbit Assembly
,”
Aerosp. Sci. Technol.
,
103
, p.
105894
.10.1016/j.ast.2020.105894
14.
Horie
,
K.
, and
Conway
,
B. A.
,
2006
, “
Optimal Fighter Pursuit-Evasion Maneuvers Found Via Two-Sided Optimization
,”
J. Guid. Control Dyn.
,
29
(
1
), pp.
105
112
.10.2514/1.3960
15.
Breitner
,
M. H.
,
Pesch
,
H. J.
, and
Grimm
,
W.
,
1993
, “
Complex Differential Games of Pursuit-Evasion Type With State Constraints, Part 1: Necessary Conditions for Optimal Open-Loop Strategies
,”
J. Optim. Theory Appl.
,
78
(
3
), pp.
419
441
.10.1007/BF00939876
16.
Macias
,
V.
,
Becerra
,
I.
,
Murrieta-Cid
,
R.
,
Becerra
,
H. M.
, and
Hutchinson
,
S.
,
2018
, “
Image Feedback Based Optimal Control and the Value of Information in a Differential Game
,”
Automatica
,
90
, pp.
271
285
.10.1016/j.automatica.2017.12.045
17.
Pachter
,
M.
, and
Yavin
,
Y.
,
1981
, “
A Stochastic Homicidal Chauffeur Pursuit-Evasion Differential Game
,”
J. Optim. Theory Appl.
,
34
(
3
), pp.
405
424
.10.1007/BF00934680
18.
Anderson
,
G. M.
, and
Grazier
,
V. W.
,
1976
, “
Barrier in Pursuit-Evasion Problems Between Two Low-Thrust Orbital Spacecraft
,”
AIAA J.
,
14
(
2
), pp.
158
163
.10.2514/3.61350
19.
Li
,
Z. Y.
,
Zhu
,
H.
,
Yang
,
Z.
, and
Luo
,
Y. Z.
,
2020
, “
Saddle Point of Orbital Pursuit-Evasion Game Under J2-Perturbed Dynamics
,”
J. Guid. Control Dyn.
,
43
(
9
), pp.
1733
1739
.10.2514/1.G004459
20.
Carr
,
R. W.
,
Cobb
,
R. G.
,
Pachter
,
M.
, and
Pierce
,
S.
,
2018
, “
Solution of a Pursuit-Evasion Game Using a Near-Optimal Strategy
,”
J. Guid. Control Dyn.
,
41
(
4
), pp.
841
850
.10.2514/1.G002911
21.
Sun
,
S.
,
Zhang
,
Q.
,
Loxton
,
R.
, and
Li
,
B.
,
2015
, “
Numerical Solution of a Pursuit-Evasion Differential Game Involving Two Spacecraft in Low Earth Orbit
,”
J. Ind. Manag. Optim.
,
11
(
4
), pp.
1127
1147
.10.3934/jimo.2015.11.1127
22.
Li
,
Z. Y.
,
Zhu
,
H.
,
Yang
,
Z.
, and
Luo
,
Y. Z.
,
2019
, “
A Dimension-Reduction Solution of Free-Time Differential Games for Spacecraft Pursuit-Evasion
,”
Acta Astronaut.
,
163
, pp.
201
210
.10.1016/j.actaastro.2019.01.011
23.
Lee
,
S.
, and
Park
,
S. Y.
,
2011
, “
Approximate Analytical Solutions to Optimal Reconfiguration Problems in Perturbed Satellite Relative Motion
,”
J. Guid. Control Dyn.
,
34
(
4
), pp.
1097
1111
.10.2514/1.52283
24.
Basar
,
T.
, and
Olsder
,
G. J.
,
1999
,
Dynamic Noncooperative Game Theory
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
25.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the International Conference on Neural Networks
, Vol.
4
, pp.
1942
1948
.
26.
Powell
,
M. J. D.
,
1970
, “
A Hybrid Method for Nonlinear Equations
,”
Numerical Methods for Nonlinear Algebraic Equations
,
Gordon & Breach
,
London
.
27.
More
,
J. J.
,
Garbow
,
B. S.
, and
Hillstorm
,
K. E.
,
1980
,
User Guide for Minpack-1
,
Argonne National Laboratory
,
Lemont, IL
.
You do not currently have access to this content.