Abstract

Nonlinear dynamic response of some noncarbon nanomaterials, involving material and geometric nonlinearities under different types of dynamic loads, is investigated using computationally efficient multiscale modeling. Multiscale-based finite element model is developed in the framework of the Cauchy–Born rule, which couples the deformation at the atomic scale to deformation at the continuum scale. The Tersoff–Brenner type interatomic potential is employed to model the atomic interactions. The governing finite elemental equations are derived through Hamilton's principle for a dynamic system. The linearization of nonlinear discrete equations is done using Newton–Raphson method and are solved using Newmark's time integration technique. The effects of material and geometric nonlinearities, inherent damping, different types of dynamic loads, and initial strain on the transient response of noncarbon nanosheets with clamped boundary conditions are reported in detail. The present results obtained from the multiscale-based finite element method are compared with those obtained from molecular dynamics (MD) simulation for the free vibration analysis, and the results are found to be in good agreement. The present results are also compared with the results of those obtained from Kirchhoff plate model for some cases.

References

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
2.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
,
1998
, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
,
80
(
20
), pp.
4502
4505
.10.1103/PhysRevLett.80.4502
3.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From ab Initio Computations
,”
Phys. Rev. B
,
64
(
23
), p.
235406
.10.1103/PhysRevB.64.235406
4.
Şahin
,
H.
,
Cahangirov
,
S.
,
Topsakal
,
M.
,
Bekaroglu
,
E.
,
Akturk
,
E.
,
Senger
,
R. T.
, and
Ciraci
,
S.
,
2009
, “
Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations
,”
Phys. Rev. B
,
80
(
15
), p.
155453
.10pp).10.1103/PhysRevB.80.155453
5.
Akdim
,
B.
,
Pachter
,
R.
,
Duan
,
X.
, and
Adams
,
W.
,
2003
, “
Comparative Theoretical Study of Single-Wall Carbon and Boron-Nitride Nanotubes
,”
Phys. Rev. B
,
67
(
24
), pp.
245404
8pp
.10.1103/PhysRevB.67.245404
6.
Peng
,
Q.
,
Ji
,
W.
, and
De
,
S.
,
2012
, “
Mechanical Properties of the Hexagonal Boron Nitride Monolayer: Ab Initio Study
,”
Comput. Mater. Sci.
,
56
, pp.
11
17
.10.1016/j.commatsci.2011.12.029
7.
Singh
,
A. K.
,
Zhuang
,
H. L.
, and
Hennig
,
R. G.
,
2014
, “
Ab Initio Synthesis of Single-Layer III-V Materials
,”
Phys. Rev. B
,
89
(
24
), p.
245431
.10.1103/PhysRevB.89.245431
8.
Kochaev
,
A.
,
2017
, “
Elastic Properties of Noncarbon Nanotubes as Compared to Carbon Nanotubes
,”
Phys. Rev. B
,
96
(
15
), p.
155428
.10.1103/PhysRevB.96.155428
9.
Zhao
,
M.
,
Xia
,
Y.
,
Zhang
,
D.
, and
Mei
,
L.
,
2003
, “
Stability, and Electronic Structure of AlN Nanotubes
,”
Phys. Rev. B
,
68
(
23
), p.
235415
.10.1103/PhysRevB.68.235415
10.
Zhou
,
Z.
,
Zhao
,
J.
,
Chen
,
Y.
,
Schleyer
,
P.
, and
Chen
,
Z.
,
2007
, “
Energetics, and Electronic Structures of AlN Nanotubes/Wires and Their Potential Application as Ammonia Sensors
,”
Nanotechnology
,
18
(
42
), p.
424023
.10.1088/0957-4484/18/42/424023
11.
Lee
,
S. M.
,
Lee
,
Y. H.
,
Hwang
,
Y. G.
,
Elsner
,
J.
,
Porezag
,
D.
, and
Frauenheim
,
T.
,
1999
, “
Stability and Electronic Structure of GaN Nanotubes From Density-Functional Calculations
,”
Phys. Rev. B
,
60
(
11
), pp.
7788
7791
.10.1103/PhysRevB.60.7788
12.
Qian
,
Z.
,
Hou
,
S.
,
Zhang
,
J.
,
Li
,
R.
,
Shen
,
Z.
,
Zhao
,
X.
, and
Xue
,
Z.
,
2005
, “
Stability and Electronic Structure of Single-Walled InN Nanotubes
,”
Phys. E Low-Dimen. Syst. Nanostruct.
,
30
(
1–2
), pp.
81
85
.10.1016/j.physe.2005.07.002
13.
Lisenkov
,
S. V.
,
Vinogradov
,
G. A.
, and
Lebedev
,
N. G.
,
2005
, “
New Class of Non-Carbon AlP Nanotubes: Structure and Electronic Properties
,”
J. Exp. Theor., Phys. Lett.
,
81
(
4
), pp.
222
227
.10.1134/1.1914878
14.
Rodriguez-Hernandez
,
P.
,
Gonzalez-Diaz
,
M.
, and
Munoz
,
A.
,
1995
, “
Electronic and Structural Properties of Cubic BN and BP
,”
Phys. Rev. B
,
51
(
20
), p.
14705
.10.1103/PhysRevB.51.14705
15.
Benkabou
,
F.
,
Aourag
,
H.
,
Becker
,
P. J.
, and
Certier
,
M.
,
2000
, “
Molecular Dynamics Study of Zinc-Blende GaN, AIN and InN
,”
Mol. Simul.
,
23
(
4–5
), pp.
327
341
.10.1080/08927020008025376
16.
Benkabou
,
F.
,
Aourag
,
H.
, and
Certier
,
M.
,
2003
, “
Elastic Properties of Zinc-Blende GaN, AIN and InN
,”
Mol. Simul.
,
29
(
3
), pp.
201
209
.10.1080/0892702021000049673
17.
Kang
,
J. W.
, and
Hwang
,
H. J.
,
2004
, “
Atomistic Study of III-Nitride Nanotubes
,”
Comput. Mater. Sci.
,
31
(
3–4
), pp.
237
246
.10.1016/j.commatsci.2004.03.004
18.
Tungare
,
M.
,
Shi
,
Y.
,
Tripathi
,
N.
,
Suvarna
,
P.
, and
Shahedipour-Sandvik
,
F. S.
,
2011
, “
A Tersoff‐ Based Interatomic Potential for Wurtzite AlN
,”
Phys. Status Solidi A
,
208
(
7
), pp.
1569
1572
.10.1002/pssa.201001086
19.
El-Mellouhi
,
F.
,
Sekkal
,
W.
, and
Zaoui
,
A.
,
2002
, “
A Modified Tersoff Potential for the Study of Finite-Temperature Properties of BP
,”
Phys. A
,
311
(
1–2
), pp.
130
136
.10.1016/S0378-4371(02)00780-X
20.
Shokuhfar
,
A.
,
Ebrahimi-Nejad
,
S.
,
Hosseini-Sadegh
,
A.
, and
Zare-Shahabadi
,
A.
,
2012
, “
The Effect of Temperature on the Compressive Buckling of Boron Nitride Nanotubes
,”
Phys. Status Solidi A
,
209
(
7
), pp.
1266
1273
.10.1002/pssa.201127678
21.
Giannopoulos
,
G. I.
,
2018
, “
On the Buckling of Hexagonal Boron Nitride Nanoribbons Via Structural Mechanics
,”
Superlatt. Microstruct.
,
115
, pp.
1
09
.10.1016/j.spmi.2018.01.016
22.
Song
,
J.
,
Wu
,
J.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Jiang
,
H.
,
2008
, “
Stiffness and Thickness of Boron Nitride Nanotubes
,”
J. Nanosci. Nanotechnol.
,
8
(
7
), pp.
3774
3780
.10.1166/jnn.2008.18342
23.
Song
,
J.
,
Wu
,
J.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2008
, “
Continuum Modelling of Boron Nitride Nanotubes
,”
Nanotechnol.
,
19
(
44
), p.
445705
.10.1088/0957-4484/19/44/445705
24.
Aghababaei
,
R.
, and
Reddy
,
J. N.
,
2009
, “
Nonlocal Third-Order Shear Deformation Plate Theory With Application to Bending and Vibration of Plates
,”
J. Sound Vib.
,
326
(
1–2
), pp.
277
289
.10.1016/j.jsv.2009.04.044
25.
Arash
,
B.
, and
Wang
,
Q.
,
2012
, “
A Review on the Application of Nonlocal Elastic Models in the Modelling of Carbon Nanotubes and Graphenes
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
303
313
.10.1016/j.commatsci.2011.07.040
26.
Gao
,
G.
,
Cagin
,
T.
, and
Goddard
,
W. A.
,
1998
, “
Energetics, Structural, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes
,”
Nanotechnology
,
9
(
3
), pp.
184
191
.10.1088/0957-4484/9/3/007
27.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2003
, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Compos. Science Technol.
,
63
(
11
), pp.
1533
1542
.10.1016/S0266-3538(03)00058-7
28.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
,
2005
, “
Continuum Model for the Vibration of Multilayered Graphene Sheets
,”
Phys. Rev. B
,
72
(
7
), pp.
075443
6pp
.10.1103/PhysRevB.72.075443
29.
Rouhi
,
S.
, and
Ansari
,
R.
,
2012
, “
Atomistic Finite Element Model for Axial Buckling and Vibration Analysis of Single-Layered Graphene Sheets
,”
Phys. E
,
44
(
4
), pp.
764
772
.10.1016/j.physe.2011.11.020
30.
Behfar
,
K.
, and
Naghdabadi
,
R.
,
2005
, “
Nanoscale Vibrational Analysis of a Multi-Layered Graphene Sheet Embedded in an Elastic Medium
,”
Compos. Sci. Technol.
,
65
(
7–8
), pp.
1159
1164
.10.1016/j.compscitech.2004.11.011
31.
Wang
,
J.
,
He
,
X.
,
Kitipornchai
,
S.
, and
Zhang
,
H.
,
2011
, “
Geometrical Nonlinear Free Vibration of Multi-Layered Graphene Sheets
,”
J. Phys. D Appl. Phys.
,
44
(
13
), p.
135401
.10.1088/0022-3727/44/13/135401
32.
He
,
X. Q.
,
Wang
,
J. B.
,
Liu
,
B.
, and
Liew
,
K. M.
,
2012
, “
Analysis of Nonlinear Forced Vibration of Multi-Layered Graphene Sheets
,”
Comput. Mater. Sci.
,
61
, pp.
194
199
.10.1016/j.commatsci.2012.03.043
33.
Mahdavi
,
M. H.
,
Jiang
,
L. Y.
, and
Sun
,
X.
,
2012
, “
Nonlinear Vibration and Post-Buckling Analysis of a Single Layer Graphene Sheet Embedded in a Polymer Matrix
,”
Phys. E
,
44
(
7–8
), pp.
1708
1715
.10.1016/j.physe.2012.04.026
34.
Arghavan
,
S.
, and
Singh
,
A. V.
,
2011
, “
Free Vibration of Single Layer Graphene Sheet: Lattice Structure Versus Continuum Plate Theories
,”
ASME J. Nanotechnol. Eng. Med.
,
2
(
3
), p.
031005
.10.1115/1.4004323
35.
Yan
,
J. W.
,
Liew
,
K. M.
, and
He
,
L. H.
,
2013
, “
Free Vibration Analysis of Single-Walled Carbon Nanotubes Using a Higher-Order Gradient Theory
,”
J. Sound Vib.
,
332
(
15
), pp.
3740
3755
.10.1016/j.jsv.2013.02.004
36.
Chowdhury
,
R.
,
Adhikari
,
S.
,
Scarpa
,
F.
, and
Friswell
,
M. I.
,
2011
, “
Transverse Vibration of Single-Layer Graphene Sheets
,”
J. Phys. D Appl. Phys.
,
44
(
20
), p.
205401
.10.1088/0022-3727/44/20/205401
37.
Li
,
C.
, and
Chou
,
T.-W.
,
2004
, “
Vibrational Behaviours of Multiwalled-Carbon-Nanotube-Based Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
84
(
1
), pp.
121
123
.10.1063/1.1638623
38.
Hashemnia
,
K.
,
Farid
,
M.
, and
Vatankhah
,
R.
,
2009
, “
Vibrational Analysis of Carbon Nanotubes and Graphene Sheets Using Molecular Structural Mechanics' Approach
,”
Comput. Mater. Sci.
,
47
(
1
), pp.
79
85
.10.1016/j.commatsci.2009.06.016
39.
Panchal
,
M. B.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2012
, “
Vibration Analysis of Single-Walled Boron Nitride Nanotube-Based Nanoresonators
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031004
.10.1115/1.4007696
40.
Panchal
,
M. B.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
An Efficient Finite Element Model for Analysis of Single-Walled Boron Nitride Nanotube-Based Resonant Nanomechanical Sensors
,”
NANO Brief Rep. Rev.
,
8
(
1
), p.
1350011
.10.1142/S1793292013500112
41.
Chowdhury
,
R.
,
Wang
,
C. Y.
,
Adhikari
,
S.
, and
Scarpa
,
F.
,
2010
, “
Vibration and Symmetry-Breaking of Boron Nitride Nanotubes
,”
Nanotechnology
,
21
(
36
), p.
365702
.10.1088/0957-4484/21/36/365702
42.
Giannopoulos
,
G.
,
Kontoni
,
D.-P.
, and
Georgantzinos
,
S.
,
2016
, “
Efficient FEM Simulation of Static and Free Vibration Behaviour of Single-Walled Boron Nitride Nanotubes
,”
Superlatt. Microstruct.
,
96
, pp.
111
120
.10.1016/j.spmi.2016.05.016
43.
Arani
,
A. G.
,
Amir
,
S.
,
Shajari
,
A. R.
,
Mozdianfard
,
M. R.
,
Maraghi
,
Z. K.
, and
Mohammadimehr
,
M.
,
2012
, “
Electro-Thermal Non-Local Vibration Analysis of Embedded DWBNNTs
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
226
(
5
), pp.
1410
1422
.10.1177/0954406211422619
44.
Arani
,
A. G.
,
Shokravi
,
M.
,
Amir
,
S.
, and
Mozdianfard
,
M. R.
,
2012
, “
Nonlocal Electro-Thermal Transverse Vibration of Embedded Fluid Conveying DWBNNTs
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1455
1462
.10.1007/s12206-012-0307-9
45.
Arani
,
A. G.
,
Atabakhshian
,
V.
,
Loghman
,
A.
,
Shajari
,
A. R.
, and
Amir
,
S.
,
2012
, “
Nonlinear Vibration of Embedded SWBNNTs Based on Nonlocal Timoshenko Beam Theory Using DQ Method
,”
Phys. B
,
407
(
13
), pp.
2549
2555
.10.1016/j.physb.2012.03.065
46.
Arani
,
A. G.
,
Kolahchi
,
R.
, and
Maraghi
,
Z. K.
,
2013
, “
Nonlinear Vibration and Instability of Embedded Double-Walled Boron Nitride Nanotubes Based on Nonlocal Cylindrical Shell Theory
,”
Appl. Math. Modell.
,
37
(
14–15
), pp.
7685
7707
.10.1016/j.apm.2013.03.020
47.
Arani
,
A. G.
,
Sabzeali
,
M.
, and
Zarei
,
H.
,
2017
, “
Nonlinear Vibration of Double-Walled Boron Nitride and Carbon Nanopeapods Under Multi-Physical Fields With Consideration of Surface Stress Effects
,”
Eur. Phys. J. Plus
,
132
, p.
538
.10.1140/epjp/i2017-11800-6
48.
Maraghi
,
Z. K.
,
Arani
,
A. G.
,
Kolahchi
,
R.
,
Amir
,
S.
, and
Bagheri
,
M. R.
,
2013
, “
Nonlocal Vibration and Instability of Embedded DWBNNT Conveying Viscose Fluid
,”
Compos. Part B
,
45
(
1
), pp.
423
432
.10.1016/j.compositesb.2012.04.066
49.
Chandra
,
A.
,
Patra
,
P. K.
, and
Bhattacharya
,
B.
,
2015
, “
Thermal Vibration Characteristics of Armchair Boron-Nitride Nanotubes
,”
J. Appl. Phys.
,
118
(
23
), p.
234503
.10.1063/1.4937559
50.
Ansari
,
R.
, and
Ajori
,
S.
,
2014
, “
Molecular Dynamics Study of the Torsional Vibration Characteristics of Boron-Nitride Nanotubes
,”
Phys. Lett. A
,
378
(
38–39
), pp.
2876
2880
.10.1016/j.physleta.2014.08.006
51.
Ansari
,
R.
, and
Ajori
,
S.
,
2015
, “
A Molecular Dynamics Study on the Vibration of Carbon and Boron Nitride Double-Walled Hybrid Nanotubes
,”
Appl. Phys. A
,
120
(
4
), pp.
1399
1406
.10.1007/s00339-015-9324-8
52.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solid Struct.
,
39
(
13–14
), pp.
3893
3906
.10.1016/S0020-7683(02)00186-5
53.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2003
, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
429
442
.10.1016/j.commatsci.2003.08.004
54.
Guo
,
X.
,
Wang
,
J. B.
, and
Zhang
,
H. W.
,
2006
, “
Mechanical Properties of Single-Walled Carbon Nanotubes Based on Higher-Order Cauchy-Born Rule
,”
Int. J. Solid Struct.
,
43
(
5
), pp.
1276
1290
.10.1016/j.ijsolstr.2005.05.049
55.
Wang
,
J. B.
,
Guo
,
X.
,
Zhang
,
H. W.
,
Wang
,
L.
, and
Liao
,
J. B.
,
2006
, “
Energy and Mechanical Properties of Single-Walled Carbon Nanotubes Predicted Using the Higher-Order Cauchy-Born Rule
,”
Phys. Rev. B
,
73
(
11
), pp.
115428
9pp
.10.1103/PhysRevB.73.115428
56.
Liew
,
K. M.
, and
Sun
,
Y.
,
2008
, “
Elastic Properties and Pressure-Induced Structural Transitions of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
77
(
20
), p.
205437
.10.1103/PhysRevB.77.205437
57.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
(“A). Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule
,”
Phys. Rev. B
,
69
(
11
), p.
115415
.10.1103/PhysRevB.69.115415
58.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2002
, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solid
,
50
(
9
), pp.
1941
1977
.10.1016/S0022-5096(02)00002-9
59.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Element Methods for the Nonlinear Mechanics of Crystalline Sheets and Nanotubes
,”
Int. J. Numer. Methods Eng.
,
59
(
3
), pp.
419
456
.10.1002/nme.944
60.
Sun
,
Y.
, and
Liew
,
K. M.
,
2008
, “
Mesh-Free Simulation of Single-Walled Carbon Nanotubes Using Higher-Order Cauchy-Born Rule
,”
Comput. Mater. Sci.
,
42
(
3
), pp.
444
452
.10.1016/j.commatsci.2007.08.008
61.
Sun
,
Y.
, and
Liew
,
K. M.
,
2008
, “
The Buckling of Single-Walled Carbon Nanotubes Upon Bending: The Higher-Order Gradient Continuum and Mesh-Free Method
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
33–40
), pp.
3001
3013
.10.1016/j.cma.2008.02.003
62.
Singh
,
S.
, and
Patel
,
B. P.
,
2016
, “
Nonlinear Dynamic Response of Single-Layer Graphene Sheets Using Multiscale Modelling
,”
Eur. J. Mech. A/Solids
,
59
, pp.
165
177
.10.1016/j.euromechsol.2016.04.002
63.
Yan
,
J. W.
,
He
,
J. B.
, and
Tong
,
L. H.
,
2019
, “
Longitudinal and Torsional Vibration Characteristics of Boron Nitride Nanotubes
,”
J. Vib. Eng. Technol.
,
7
(
3
), pp.
205
215
.10.1007/s42417-019-00113-4
64.
Yan
,
J. W.
,
Tong
,
L. H.
,
Luo
,
R. J.
, and
Gao
,
D.
,
2019
, “
Thickness of Monolayer h-BN Nanosheet and Edge Effect on Free Vibration Behaviours
,”
Int. J. Mech. Sci.
,
164
, p.
105163
.10.1016/j.ijmecsci.2019.105163
65.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Effect of Initial Strain and Material Nonlinearity on the Nonlinear Static and Dynamic Response of Graphene Sheets
,”
J. Sound Vib.
,
423
, pp.
373
400
.10.1016/j.jsv.2018.02.059
66.
Liew
,
K. M.
, and
Sun
,
Y.
,
2008
, “
Application of Higher-Order Cauchy-Born Rule in Mesh-Free Continuum and Multiscale Simulation of CNTs
,”
Int. J. Numer. Methods Eng.
,
75
(
10
), pp.
1238
1258
.10.1002/nme.2299
67.
Singh
,
S.
,
2020
, “
Critical Assessment of the Interatomic Potentials for the Elastic Properties of the Noncarbon Monolayer Nanomaterials
,”
Comput. Mater. Sci.
,
177
, p.
109550
.10.1016/j.commatsci.2020.109550
68.
Singh
,
S.
,
Ravi Raj
,
B. M.
,
Mali
,
K. D.
, and
Watts
,
G.
,
2021
, “
Elastic Properties, and Nonlinear Elasticity of Noncarbon Hexagonal Lattice Nanomaterials Based on Multiscale Modelling, ASME
,”
J. Eng. Mater. Technol.
,
143
(
2
), p.
021006
.10.1115/1.4048874
69.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), p.
245413
.10.1103/PhysRevB.74.245413
70.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Large Deformation Static and Dynamic Response of Carbon Nanotubes by Mixed Atomistic and Continuum Models
,”
Int. J. Mech. Sci.
,
135
, pp.
565
581
.10.1016/j.ijmecsci.2017.11.041
71.
Singh
,
S.
,
2019
, “
Refined Multiscale Model Based on the Second-Generation Interatomic Potential for the Mechanics of Graphene Sheets
,”
Mech. Mater.
,
133
, pp.
26
36
.10.1016/j.mechmat.2019.03.004
72.
Reddy
,
J. N.
,
2007
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
73.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice Hall and Pearson Education
,
Watertown, MA
.
74.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
VNR Company
,
New York
.
75.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
7000
.10.1103/PhysRevB.37.6991
76.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapour Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.10.1103/PhysRevB.42.9458
You do not currently have access to this content.