Abstract

In this paper, beam elements with particular emphasis on higher-order elements based on the absolute nodal coordinate formulation (ANCF) are thoroughly investigated from the perspective of interpolation procedure and numerical performance. A straightforward and modularized procedure to construct the shape function is proposed. Based on the unified shape function formulation, the research examines how axial and transverse interpolation strategies impact element performance. Two beams in the pure bending scenario are analyzed. The comparison study reveals that higher-order interpolation in the axial and transverse directions is necessary to represent the highly curved deformation modes and alleviate Poisson locking. The Princeton beam and a thicker beam are then studied to assess the accuracy, convergence, and numerical stability of different beam elements. Conclusions are: (1) Higher-order beam elements are generally more accurate but converge more slowly. (2) To guarantee high accuracy, a complete set of transverse quadratic gradients must be adopted in the quadratic elements, and a higher-order transverse interpolation is necessary to capture the warping effect. (3) To avoid slow convergence, the axial order should not be lower than the transverse order. (4) Higher-order beam elements lead to a stiffness matrix with a larger condition number. With an inappropriate length to cross section ratio, the transverse cubic element results in an ill-conditioned stiffness matrix that brings numerical instability. (5) The numerical stability of higher-order beam elements are more sensitive to the length to cross section ratio of the meshed beam.

References

1.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.10.1006/jsvi.2000.3416
2.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
3.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.10.1007/s11831-014-9117-9
4.
Sopanen
,
J. T.
, and
Mikkola
,
A.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
5.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
6.
Matikainen
,
M.
,
Von Hertzen
,
R.
,
Mikkola
,
A.
, and
Gerstmayr
,
J.
,
2010
, “
Elimination of High Frequencies in the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
224
(
1
), pp.
103
116
.10.1243/14644193JMBD186
7.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021004
.10.1115/1.4006787
8.
Yamashita
,
H.
,
Valkeapää
,
A. I.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012
.10.1115/1.4028657
9.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A.
,
2005
, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
280
(
3–5
), pp.
719
738
.10.1016/j.jsv.2003.12.044
10.
Hussein
,
B. A.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2007
, “
Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
146
154
.10.1115/1.2447353
11.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2010
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011010
.10.1115/1.4000320
12.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
13.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V. V.
, and
Mikkola
,
A.
,
2017
, “
Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1075
1091
.10.1007/s11071-016-3296-x
14.
Matikainen
,
M. K.
,
Valkeapää
,
A. I.
,
Mikkola
,
A. M.
, and
Schwab
,
A.
,
2014
, “
A Study of Moderately Thick Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
309
338
.10.1007/s11044-013-9383-6
15.
Shen
,
Z.
,
Li
,
P.
,
Liu
,
C.
, and
Hu
,
G.
,
2014
, “
A Finite Element Beam Model Including Cross-Section Distortion in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1019
1033
.10.1007/s11071-014-1360-y
16.
Orzechowski
,
G.
, and
Shabana
,
A. A.
,
2016
, “
Analysis of Warping Deformation Modes Using Higher Order ANCF Beam Element
,”
J. Sound Vib.
,
363
, pp.
428
445
.10.1016/j.jsv.2015.10.013
17.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
225
(
1
), pp.
34
51
.10.1177/2041306810392115
18.
Li
,
P.
,
Gantoi
,
F. M.
, and
Shabana
,
A. A.
,
2011
, “
Higher Order Representation of the Beam Cross Section Deformation in Large Displacement Finite Element Analysis
,”
J. Sound Vib.
,
330
(
26
), pp.
6495
6508
.10.1016/j.jsv.2011.07.013
19.
Yu
,
H.
,
Zhao
,
C.
, and
Zheng
,
H.
,
2017
, “
A Higher-Order Variable Cross-Section Viscoelastic Beam Element Via ANCF for Kinematic and Dynamic Analyses of Two-Link Flexible Manipulators
,”
Int. J. Appl. Mech.
,
9
(
8
), p.
1750116
.10.1142/S1758825117501162
20.
Zhao
,
C. H.
,
Bao
,
K. W.
, and
Tao
,
Y. L.
,
2021
, “
Transversally Higher-Order Interpolating Polynomials for the Two-Dimensional Shear Deformable ANCF Beam Elements Based on Common Coefficients
,”
Multibody Syst. Dyn.
,
51
(
4
), pp.
475
495
.10.1007/s11044-020-09768-4
21.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
22.
Gerstmayr
,
J.
, and
Matikainen
,
M. K.
,
2006
, “
Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
,
34
(
4
), pp.
409
430
.10.1080/15397730601044895
23.
Yu
,
H.
,
Zhao
,
C.
,
Zheng
,
B.
, and
Wang
,
H.
,
2018
, “
A New Higher-Order Locking-Free Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
232
(
19
), pp.
3410
3423
.10.1177/0954406217736550
24.
Matikainen
,
M. K.
,
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2010
, “
Beam Elements With Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation
,”
AIP Conf. Proc.
,
1281
, pp.
1266
1270
.10.1063/1.3497930
25.
García-Vallejo
,
D.
,
Mikkola
,
A.
, and
Escalona
,
J. L.
,
2007
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
249
264
.10.1007/s11071-006-9155-4
26.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
245
263
.10.1007/s11044-011-9249-8
27.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
A 3D Shear Deformable Finite Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Dynamics
,
Springer
, Dordrecht, The Netherlands, pp.
77
96
.
28.
Matikainen
,
M. K.
, and
Dmitrochenko
,
O.
,
2014
, “
A Study of Three-Node Higher-Order Gradient Beam Elements Based on the Absolute Nodal Coordinate Formulation
,”
Third Joint International Conference on Multibody System Dynamics
, Busan, Korea, June 30–July 3.https://www.researchgate.net/publication/271767136_A_study_of_three-node_higherorder_gradient_beam_elements_based_on_the_absolute_nodal_coordinate_formulation
29.
Bozorgmehri
,
B.
,
Hurskainen
,
V. V.
,
Matikainen
,
M. K.
, and
Mikkola
,
A.
,
2019
, “
Dynamic Analysis of Rotating Shafts Using the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
453
, pp.
214
236
.10.1016/j.jsv.2019.03.022
30.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
31.
Carrera
,
E.
,
Giunta
,
G.
,
Nali
,
P.
, and
Petrolo
,
M.
,
2010
, “
Refined Beam Elements With Arbitrary Cross-Section Geometries
,”
Comput. Struct.
,
88
(
5–6
), pp.
283
293
.10.1016/j.compstruc.2009.11.002
32.
Kerkkänen
,
K. S.
,
Sopanen
,
J. T.
, and
Mikkola
,
A.
,
2005
, “
A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
621
630
.10.1115/1.1897406
33.
Borković
,
A.
,
Marussig
,
B.
, and
Radenković
,
G.
,
2022
, “
Geometrically Exact Static Isogeometric Analysis of Arbitrarily Curved Plane Bernoulli–Euler Beam
,”
Thin-Walled Struct.
,
170
, p.
108539
.10.1016/j.tws.2021.108539
34.
Battini
,
J.-M.
, and
Pacoste
,
C.
,
2002
, “
Co-Rotational Beam Elements With Warping Effects in Instability Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
17–18
), pp.
1755
1789
.10.1016/S0045-7825(01)00352-8
35.
Lan
,
P.
,
Tian
,
Q.
, and
Yu
,
Z.
,
2020
, “
A New Absolute Nodal Coordinate Formulation Beam Element With Multilayer Circular Cross Section
,”
Acta Mech. Sin.
,
36
(
1
), pp.
82
96
.10.1007/s10409-019-00897-4
36.
Goyet
,
d. V.
,
1989
, “
L'analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres a section non symétrique
,” Ph.D. thesis,
Université de Liége
, Liège, Belgium.
You do not currently have access to this content.