Abstract

In this paper, period-1 motions to twin spiral homoclinic orbits in the Rössler system are presented. The period-1 motions varying with a system parameter are predicted semi-analytically through an implicit mapping method, and the corresponding stability and bifurcations of the period-1 motions are determined through eigenvalue analysis. The approximate homoclinic orbits are obtained, which can be detected through the periodic motions with the positive and negative infinite large eigenvalues. The two limit ends of the bifurcation diagram of the period-1 motion are at twin spiral homoclinic orbits. For comparison, numerical and analytical results of stable period-1 motion are presented. The approximate spiral homoclinic orbits are demonstrated for a better understanding of complex dynamics of homoclinic orbits. Herein, only initial results on periodic motions to homoclinic orbits are presented for the Rössler system. In fact, the Rössler system has rich complex dynamics existing in other high-dimensional nonlinear systems. Thus, the further studies of bifurcation trees of periodic motions to infinite homoclinic orbits will be completed in sequel.

References

1.
Rössler
,
O. E.
,
1976
, “
An Equation for Continuous Choas
,”
Phys. Lett. A
,
57
(
5
), pp.
397
398
.10.1016/0375-9601(76)90101-8
2.
Gaspard
,
P.
,
1983
, “
Generation of a Countable Set of Homoclinic Flows Through Bifurcations
,”
Phys. Lett.
,
97
(
1–2
), pp.
1
4
.10.1016/0375-9601(83)90085-3
3.
Gaspard
,
P.
,
Kapral
,
R.
, and
Nicolis
,
G.
,
1984
, “
Bifurcation Phenomena Near Homoclinic Systems: A Two-Parameter Analysis
,”
J. Stat. Phys.
,
35
(
5–6
), pp.
697
727
.10.1007/BF01010829
4.
Gardini
,
L.
,
1985
, “
Hopf Bifurcation and Period-Doubling Transitions in Rössler Model
,”
Nuovo Cimento B
,
89
(
2
), pp.
139
160
.10.1007/BF02723543
5.
Arneodo
,
A.
,
Coullet
,
P. H.
,
Spiegel
,
E. A.
, and
Tresser
,
C.
,
1985
, “
Asymptotic Chaos
,”
Phys. D
,
14
(
3
), pp.
327
347
.10.1016/0167-2789(85)90093-4
6.
Shilnikov
,
L. P.
,
1967
, “
On a Poincaré–Birkhoff Problem
,”
Matematicheskii Sb.
,
116
(
3
), pp.
378
397
.10.1070/SM1967v003n03ABEH002748
7.
Arneodo
,
A.
,
Coullet
,
P.
, and
Tresser
,
C.
,
1982
, “
Oscillators With Chaotic Behavior: An Illustration of a Theorem by Shilnikov
,”
J. Stat. Phys.
,
27
(
1
), pp.
171
182
.10.1007/BF01011745
8.
Letellier
,
C.
,
Dutertre
,
P.
, and
Maheu
,
B.
,
1995
, “
Unstable Periodic Orbits and Templates of the Rössler Systems, Toward a Systematic Topological Characterization
,”
Chaos
,
5
(
1
), pp.
271
282
.10.1063/1.166076
9.
Barrio
,
R.
,
Blesa
,
F.
, and
Serrano
,
S.
,
2009
, “
Qualitative Analysis of the Rössler Equations: Bifurcations of Limit Cycles and Chaotic Attractors
,”
Phys. D
,
238
(
13
), pp.
1087
1100
.10.1016/j.physd.2009.03.010
10.
Barrio
,
R.
,
Blesa
,
F.
,
Dena
,
A.
, and
Serrano
,
S.
,
2011
, “
Qualitative and Numerical Analysis of the Rössler Model: Bifurcations of Equilibria
,”
Comput. Math. Appl.
,
62
(
11
), pp.
4140
4150
.10.1016/j.camwa.2011.09.064
11.
Malykh
,
S.
,
Bakhanova
,
Y.
,
Kazakov
,
A.
,
Pusuluri
,
K.
, and
Shilnikov
,
A.
,
2020
, “
Homoclinic Chaos in the Rössler System
,”
Chaos
,
30
(
11
), p.
113126
.10.1063/5.0026188
12.
Luo
,
A. C. J.
,
2015
,
Discretization and Implicit Mapping Dynamics
,
Springer
,
Berlin/Heidelberg
.
13.
Luo
,
A. C. J.
,
2015
, “
Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems
,”
Int. J. Bifurcation Chaos
,
25
(
3
), p.
1550044
.10.1142/S0218127415500443
14.
Luo
,
A. C. J.
, and
Guo
,
Y.
,
2015
, “
A Semi-Analytical Prediction of Periodic Motions in Duffing Oscillator Through Mapping Structures
,”
Discontinuity, Nonlinearity, Complexity
,
4
(
2
), pp.
121
150
.10.5890/DNC.2015.06.002
15.
Luo
,
A. C. J.
, and
Huang
,
J. Z.
,
2013
, “
Analytical Solutions for Asymmetric Periodic Motions to Chaos in a Hardening Duffing Oscillator
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
417
438
.10.1007/s11071-012-0725-3
16.
Luo
,
A. C. J.
, and
Xing
,
S. Y.
,
2016
, “
Multiple Bifurcation Trees of Period-1 Motions to Chaos in a Periodically Forced, Time-Delayed, Hardening Duffing Oscillator
,”
Chaos, Solitons Fractals
,
89
, pp.
405
434
.10.1016/j.chaos.2016.02.005
17.
Xing
,
S. Y.
, and
Luo
,
A. C. J.
,
2017
, “
Towards Infinite Bifurcation Trees of Period-1 Motions to Chaos in a Time-Delayed, Twin-Well Duffing Oscillator
,”
J. Vib. Test. Syst. Dyn.
,
1
(
4
), pp.
353
392
.10.5890/JVTSD.2017.12.006
18.
Guo
,
Y.
, and
Luo
,
A. C. J.
,
2017
, “
Complete Bifurcation Trees of a Parametrically Driven Pendulum
,”
J. Vib. Test. Syst. Dyn.
,
1
(
2
), pp.
93
134
.10.5890/JVTSD.2017.06.001
19.
Luo
,
A. C. J.
, and
Guo
,
C.
,
2019
, “
A Period-1 Motion to Chaos in a Periodically Forced, Damped, Double-Pendulum
,”
J. Vib. Test. Syst. Dyn.
,
3
(
3
), pp.
259
280
.10.5890/JVTSD.2019.09.002
20.
Guo
,
S.
, and
Luo
,
A. C. J.
,
2021
, “
On Infinite Homoclinic Orbits Induced by Unstable Periodic Orbits in the Lorenz System
,”
Chaos
,
31
(
4
), p.
043106
.10.1063/5.0044161
21.
Guo
,
S.
, and
Luo
,
A. C. J.
,
2021
, “
Bifurcation Trees of (1:2)-Asymmetric Periodic Motions With Corresponding Infinite Homoclinic Orbits in the Lorenz System
,”
J. Vib. Test. Syst. Dyn.
,
5
(
4
), pp.
373
406
.10.5890/JVTSD.2021.12.005
You do not currently have access to this content.