Abstract

This study is interested in the stability of robots in machining. The goal is to improve the dynamic performance of robots using an additional acceleration signal fed back through the conventional built-in proportional-derivative controller provided by the manufacturer. The structure of the robot is modelled with a simple one degree-of-freedom lumped model and the control signals are fed back via a linear spring and damping. The time delays of the feedback controllers are considered as zero-order holds, which results in sawtooth-like time-periodic time delays. The resulting equation of motion is an advanced delay differential equation. The semidiscretization method is shown for such systems having multiple sampled digital delays and continuous delays. First, we establish the stable regions in the plane of the sampling delay and the gain of the acceleration signal without machining. Then, we show the possibility to improve stability in turning and milling using the additional acceleration feedback controller compared to the cases without any controller or using only the built-in proportional-derivative controller.

References

1.
Hagele
,
M.
,
2016
, “
Robots Conquer the World [Turning Point]
,”
IEEE Rob. Autom. Mag.
,
23
(
1
), pp.
120
118
.10.1109/MRA.2015.2512741
2.
Verl
,
A.
,
Valente
,
A.
,
Melkote
,
S.
,
Christian
,
B.
,
Ozturk
,
E.
, and
Lutfi
,
T.
,
2019
, “
Robots in Machining
,”
CIRP Ann.
,
68
(
2
), pp.
799
822
.10.1016/j.cirp.2019.05.009
3.
Pan
,
Z.
,
Zhang
,
H.
,
Zhu
,
Z.
, and
Wang
,
J.
,
2006
, “
Chatter Analysis of Robotic Machining Process
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
301
309
.10.1016/j.jmatprotec.2005.11.033
4.
Davim
,
P. J.
, ed.,
2018
,
Robotics: History, Trends, and Future Directions, Chap. 7, Materials Forming, Machining and Tribology
,
Springer International Publishing
, New York, pp.
213
239
.
5.
Mejri
,
S.
,
Gagnol
,
V.
,
Le
,
T.-P.
,
Sabourin
,
L.
,
Ray
,
P.
, and
Paultre
,
P.
,
2016
, “
Dynamic Characterization of Machining Robot and Stability Analysis
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
351
359
.10.1007/s00170-015-7336-3
6.
de Wit
,
C. C.
,
Siciliano
,
B.
, and
Bastin
,
G.
,
1996
,
Theory of Robot Control
,
Springer London
, London.
7.
Cen
,
L.
, and
Melkote
,
S. N.
,
2017
, “
Effect of Robot Dynamics on the Machining Forces in Robotic Milling
,”
Procedia Manuf.
,
10
, pp.
486
496
.10.1016/j.promfg.2017.07.034
8.
Futami
,
S.
,
Kyura
,
N.
, and
Hara
,
S.
,
1983
, “
Vibration Absorption Control of Industrial Robots by Acceleration Feedback
,”
J. Vib. Control
,
IE-30
(
3
), pp.
299
305
.10.1109/TIE.1983.356741
9.
Munoa
,
J.
,
Beudaert
,
X.
,
Erkorkmaz
,
K.
,
Iglesias
,
A.
,
Barrios
,
A.
, and
Zatarain
,
M.
,
2015
, “
Active Suppression of Structural Chatter Vibrations Using Machine Drives and Accelerometers
,”
CIRP Ann.
,
64
(
1
), pp.
385
388
.10.1016/j.cirp.2015.04.106
10.
Xu
,
W.
, and
Han
,
J.
,
2000
, “
Joint Acceleration Feedback Control for Robots: Analysis, Sensing and Experiments
,”
Rob. Comput.-Integr. Manuf.
,
16
(
5
), pp.
307
320
.10.1016/S0736-5845(00)00010-7
11.
Stepan
,
G.
,
1990
,
Retarded Dynamical Systems: Stability and Characteristic Functions
, Pitman Research Notes in Mathematics Series, Longman Science & Technology,
Wiley
,
New York
.
12.
Enikov
,
E.
, and
Stepan
,
G.
,
1998
, “
Microchaotic Motion of Digitally Controlled Machines
,”
J. Vib. Control
,
4
(
4
), pp.
427
443
.10.1177/107754639800400405
13.
Habib
,
G.
,
Rega
,
G.
, and
Stepan
,
G.
,
2016
, “
Delayed Digital Position Control of a single-DoF System and the Nonlinear Behavior of the Act-and-Wait Controller
,”
J. Vib. Control
,
22
(
2
), pp.
481
495
.10.1177/1077546314533583
14.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
.10.1016/j.cirp.2016.06.004
15.
Insperger
,
T.
,
Lehotzky
,
D.
, and
Gabor
,
S.
,
2015
, “
Regenerative Delay, Parametric Forcing and Machine Tool Chatter: A Review
,”
IFAC-PapersOnLine
,
48
(
12
), pp.
322
327
.10.1016/j.ifacol.2015.09.398
16.
Dombovari
,
Z.
,
Barton
,
D. A.
,
Wilson
,
E. R.
, and
Stepan
,
G.
,
2011
, “
On the Global Dynamics of Chatter in the Orthogonal Cuttingmodel
,”
Int. J. Non-Linear Mech.
,
46
(
1
), pp.
330
338
.10.1016/j.ijnonlinmec.2010.09.016
17.
Aström
,
K. A.
, and
Wittenmark
,
B.
,
1997
,
Computer-Controlled Systems: Theory and Design
, 3rd ed.,
Tsinghua University Press
, Beijing, China.
18.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
, 2nd ed.,
Pearson
, London.
19.
Él'sgol'c
,
L. D.
,
1964
,
Qualitative Methods in Mathematical Analysis
,
American Mathematical Society
,
Providence, RI
.
20.
Insperger
,
T.
,
Stepan
,
G.
, and
Turi
,
J.
,
2010
, “
Delayed Feedback of Sampled Higher Derivatives
,”
Philos. Trans. R. Soc. A
,
368
(
1911
), pp.
469
482
.10.1098/rsta.2009.0246
21.
Peeters
,
B.
,
Van der Auweraer
,
H.
,
Guillaume
,
P.
, and
Leuridan
,
J.
,
2004
, “
The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
,”
Shock Vib.
,
11
(
3–4
), pp.
395
409
.10.1155/2004/523692
22.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems
,
Springer-Verlag
,
New York
.
23.
Molnár
,
T. G.
,
Qin
,
W. B.
,
Insperger
,
T.
, and
Orosz
,
G.
,
2018
, “
Application of Predictor Feedback to Compensate Time Delays in Connected Cruise Control
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
2
), pp.
545
559
.10.1109/TITS.2017.2754240
24.
Apostol
,
T. M.
,
1989
,
Modular Functions and Dirichlet Series in Number Theory
, 2nd ed.,
Springer
, New York.
25.
Harold
,
J.
, and
Bertha
,
J.
,
2000
,
Methods of Mathematical Physics
, 3rd ed.,
Cambridge Mathematical Library, Cambridge University Press
, Cambridge, UK.
26.
Insperger
,
T.
, and
Kovacs
,
B. A.
,
2018
, “
Retarded, Neutral and Advanced Differential Equation Models for Balancing Using an Accelerometer
,”
Int. J. Dyn. Control
,
6
(
2
), pp.
694
706
.10.1007/s40435-017-0331-9
27.
Do
,
T.-T.
,
Vu
,
V.-H.
, and
Liu
,
Z.
,
2022
, “
Linearization of Dynamic Equations for Vibration and Modal Analysis of Flexible Joint Manipulators
,”
Mech. Mach. Theory
,
167
, pp.
104516
18
.10.1016/j.mechmachtheory.2021.104516
28.
Stépán
,
G.
,
2001
, “
Modelling Nonlinear Regenerative Effects in Metal Cutting
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
739
757
.10.1098/rsta.2000.0753
29.
Tobias
,
S. A.
, and
Shi
,
H.
,
1984
, “
Theory of Finite Amplitude Machine Tool Instability
,”
Int. J. Mach. Tool Des. Res.
,
24
(
1
), pp.
45
69
.10.1016/0020-7357(84)90045-3
30.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
,
The American Society of Mechanical Engineers
, New York.
31.
Insperger
,
T.
, and
Stépán
,
G.
,
2000
, “
Stability of the Milling Process
,”
Period. Polytech., Mech. Eng.
,
44
(
1
), pp.
47
57
.https://pp.bme.hu/me/article/view/1428
You do not currently have access to this content.