Abstract

In this work, a time-fractional nonlocal diffusion equation is considered. Based on the L2-1σ scheme on a graded mesh in time and the standard finite element method (FEM) in space, the fully-discrete L2-1σ finite element method is investigated for a time-fractional nonlocal diffusion problem. We prove the existence and uniqueness of fully-discrete solution. The α-robust error bounds are derived, i.e., bounds remain valid as α1, where α(0,1) is the order of a temporal fractional derivative. The numerical experiments are presented to justify the theoretical findings.

References

1.
Chaudhary
,
S.
,
2018
, “
Finite Element Analysis of Nonlocal Coupled Parabolic Problem Using Newton's Method
,”
Comput. Math. Appl.
,
75
(
3
), pp.
981
1003
.10.1016/j.camwa.2017.10.034
2.
Srivastava
,
V.
,
Chaudhary
,
S.
,
Kumar
,
V. V. K. S.
, and
Srinivasan
,
B.
,
2017
, “
Fully Discrete Finite Element Scheme for Nonlocal Parabolic Problem Involving the Dirichlet Energy
,”
J. Appl. Math. Comput.
,
53
(
1–2
), pp.
413
443
.10.1007/s12190-015-0975-6
3.
Almeida
,
R.
,
Duque
,
J.
,
Ferreira
,
J.
, and
Robalo
,
R.
,
2015
, “
The Crank-Nicolson Galerkin Finite Element Method for a Nonlocal Parabolic Equation With Moving Boundaries
,”
Numer. Methods Partial Differ. Eq.
,
31
(
5
), pp.
1515
1533
.10.1002/num.21957
4.
Menezes
,
S. B.
,
2006
, “
Remarks on Weak Solutions for a Nonlocal Parabolic Problem
,”
Int. J. Math. Math. Sci.
,
2006
, pp.
1
10
.10.1155/IJMMS/2006/82654
5.
Zheng
,
S.
, and
Chipot
,
M.
,
2005
, “
Asymptotic Behaviour of Solutions to Nonlinear Parabolic Equations With Nonlocal Terms
,”
Asymptot. Anal.
,
45
(
3
), pp.
35
40
.10.5167/uzh-21751
6.
Diethelm
,
K.
,
2010
, “
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,”
Lecture Notes in Mathematics
, Vol. 2004,
Springer
,
Berlin, Germany
.
7.
Chaudhary
,
S.
, and
Kundaliya
,
P. J.
,
2022
, “
L1 Scheme on Graded Mesh for Subdiffusion Equation With Nonlocal Diffusion Term
,”
Math. Comput. Simul.
,
195
, pp.
119
137
.10.1016/j.matcom.2022.01.006
8.
Kundaliya
,
P. J.
, and
Chaudhary
,
S.
,
2023
, “
Symmetric Fractional Order Reduction Method With L1 Scheme on Graded Mesh for Time Fractional Nonlocal Diffusion-Wave Equation of Kirchhof Type
,”
Comput. Math. Appl.
,
149
, pp.
128
134
.10.1016/j.camwa.2023.08.031
9.
Xie
,
Y.
,
Yin
,
D.
, and
Mei
,
L.
,
2022
, “
Finite Difference Scheme on Graded Meshes to the Time-Fractional Neutron Diffusion Equation With Non-Smooth Solutions
,”
Appl. Math. Comput.
,
435
, p.
127474
.10.1016/j.amc.2022.127474
10.
Ghosh
,
B.
, and
Mohapatra
,
J.
,
2023
, “
A Novel Numerical Technique for Solving Time Fractional Nonlinear Diffusion Equations Involving Weak Singularities
,”
Math. Meth. Appl. Sci.
,
46
(
12
), pp.
12811
12825
.10.1002/mma.9214
11.
Kedia
,
N.
,
Alikhanov
,
A.
, and
Singh
,
V.
,
2022
, “
Stable Numerical Schemes for Time-Fractional Diffusion Equation With Generalized Memory Kernel
,”
Appl. Numer. Math.
,
172
, pp.
546
565
.10.1016/j.apnum.2021.11.006
12.
Kumari
,
S.
, and
Pandey
,
R.
,
2023
, “
Single-Term and Multi-Term Nonuniform Time-Stepping Approximation Methods for Two-Dimensional Time-Fractional Diffusion-Wave Equation
,”
Comput. Math. Appl.
,
151
, pp.
359
383
.10.1016/j.camwa.2023.10.008
13.
Mustapha
,
K.
, and
McLean
,
W.
,
2007
, “
A Second-Order Accurate Numerical Method for a Fractional Wave Equation
,”
Numer. Math.
,
105
(
3
), pp.
481
510
.10.1007/s00211-006-0045-y
14.
Stynes
,
M.
,
O'Riordan
,
E.
, and
Gracia
,
J. L.
,
2017
, “
Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
,”
SIAM J. Numer. Anal.
,
55
(
2
), pp.
1057
1079
.10.1137/16M1082329
15.
Sakamoto
,
K.
, and
Yamamoto
,
M.
,
2011
, “
Initial Value/Boundary Value Problems for Fractional Diffusion-Wave Equations and Applications to Some Inverse Problems
,”
J. Math. Anal. Appl.
,
382
(
1
), pp.
426
447
.10.1016/j.jmaa.2011.04.058
16.
Jin
,
B.
,
Li
,
B.
, and
Zhou
,
Z.
,
2018
, “
Numerical Analysis of Nonlinear Subdiffusion Equations
,”
SIAM J. Numer. Anal.
,
56
(
1
), pp.
1
23
.10.1137/16M1089320
17.
Li
,
D.
,
Qin
,
H.
, and
Zhang
,
J.
,
2021
, “
Sharp Pointwise-in-Time Error Estimate of L1 Scheme for Nonlinear Subdiffusion Equations
,” e-print
arXiv:2101.04554v1
.10.48550/arXiv.2101.04554
18.
Huang
,
C.
, and
Stynes
,
M.
,
2021
, “
α-Robust Error Analysis of a Mixed Finite Element Method for a Time-Fractional Biharmonic Equation
,”
Numer. Algor.
,
87
(
4
), pp.
1749
1766
.10.1007/s11075-020-01036-y
19.
Kopteva
,
N.
,
2019
, “
Error Analysis of the L1 Method on Graded and Uniform Meshes for a Fractional Derivative Problem in Two and Three Dimensions
,”
Math. Comp.
,
8
, pp.
2135
2155
.10.1090/mcom/3410
20.
Manimaran
,
J.
, and
Shangerganesh
,
L.
,
2020
, “
Error Estimates for Galerkin Finite Element Approximations of Time-Fractional Nonlocal Diffusion Equation
,”
Int. J. Comput. Math.
,
98
(
7
), pp.
1365
1384
.10.1080/00207160.2020.1820492
21.
Alikhanov
,
A.
,
2015
, “
A New Difference Scheme for the Time Fractional Diffusion Equation
,”
J. Comput. Phys.
,
280
, pp.
424
438
.10.1016/j.jcp.2014.09.031
22.
Huang
,
C.
, and
Stynes
,
M.
,
2020
, “
Optimal Spatial H1-Norm Analysis of a Finite Element Method for a Time-Fractional Diffusion Equation
,”
J. Comput. Appl. Math
,
367
, p.
112435
.10.1016/j.cam.2019.112435
23.
Huang
,
C.
, and
Stynes
,
M.
,
2022
, “
A Sharp α-Robust L ( H 1 ) Error Bound for a Time-Fractional Allen-Cahn Problem Discretised by the Alikhanov L 2- 1 σ Scheme and a Standard FEM
,”
J. Sci. Comput.
,
91
, p. 4310.1007/s10915-022-01810-1.
24.
Chen
,
H.
, and
Stynes
,
M.
,
2019
, “
Error Analysis of a Second-Order Method on Fitted Meshes for a Time Fractional Diffusion Problem
,”
J. Sci. Comput.
,
79
(
1
), pp.
624
647
.10.1007/s10915-018-0863-y
25.
Liao
,
H.
,
McLean
,
W.
, and
Zhang
,
J.
,
2021
, “
A Second-Order Scheme With Nonuniform Time Steps for a Linear Reaction-Subdiffusion Equation
,”
Commun. Comput. Phys.
,
30
(
2
), pp.
567
601
.10.4208/cicp.OA-2020-0124
26.
Chen
,
H.
, and
Stynes
,
M.
,
2021
, “
Blow-Up of Error Estimates in Time-Fractional Initial-Boundary Value Problems
,”
IMA J. Numer. Anal.
,
41
(
2
), pp.
974
997
.10.1093/imanum/draa015
27.
Chen
,
H.
,
Wang
,
Y.
, and
Fu
,
H.
,
2022
, “
α-Robust H 1-Norm Error Estimate of Nonuniform Alikhanov Scheme for Fractional Sub-Diffusion Equation
,”
Appl. Math. Lett.
,
125
, p.
107771
.10.1016/j.aml.2021.107771
28.
Gudi
,
T.
,
2012
, “
Finite Element Method for a Nonlocal Problem of Kirchhoff Type
,”
SIAM J. Numer. Anal.
,
50
(
2
), pp.
657
668
.10.1137/110822931
29.
Chaudhary
,
S.
,
Srivastava
,
V.
,
Kumar
,
V. V. K. S.
, and
Srinivasan
,
B.
,
2017
, “
Finite Element Approximation of Nonlocal Parabolic Problem
,”
Numer. Methods Partial Differ. Eq.
,
33
(
3
), pp.
786
813
.10.1002/num.22123
30.
Thomée
,
V.
,
2006
,
Galerkin Finite Element Methods for Parabolic Problems
,
2
nd revised and expanded ed.,
Springer
,
Berlin, Germany
.
31.
Liao
,
H.
,
Mclean
,
W.
, and
Zhang
,
J.
,
2019
, “
A Discrete Grönwall Inequality With Applications to Numerical Schemes for Sub-Diffusion Problems
,”
SIAM J. Numer. Anal.
,
57
(
1
), pp.
218
237
.10.1137/16M1175742
You do not currently have access to this content.