Abstract
In this work, a time-fractional nonlocal diffusion equation is considered. Based on the L2- scheme on a graded mesh in time and the standard finite element method (FEM) in space, the fully-discrete L2- finite element method is investigated for a time-fractional nonlocal diffusion problem. We prove the existence and uniqueness of fully-discrete solution. The α-robust error bounds are derived, i.e., bounds remain valid as α where is the order of a temporal fractional derivative. The numerical experiments are presented to justify the theoretical findings.
Issue Section:
Research Papers
References
1.
Chaudhary
,
S.
, 2018
, “
Finite Element Analysis of Nonlocal Coupled Parabolic Problem Using Newton's Method
,” Comput. Math. Appl.
,
75
(3
), pp. 981
–1003
.10.1016/j.camwa.2017.10.0342.
Srivastava
,
V.
,
Chaudhary
,
S.
,
Kumar
,
V. V. K. S.
, and
Srinivasan
,
B.
, 2017
, “
Fully Discrete Finite Element Scheme for Nonlocal Parabolic Problem Involving the Dirichlet Energy
,” J. Appl. Math. Comput.
,
53
(1–2
), pp. 413
–443
.10.1007/s12190-015-0975-63.
Almeida
,
R.
,
Duque
,
J.
,
Ferreira
,
J.
, and
Robalo
,
R.
, 2015
, “
The Crank-Nicolson Galerkin Finite Element Method for a Nonlocal Parabolic Equation With Moving Boundaries
,” Numer. Methods Partial Differ. Eq.
,
31
(5
), pp. 1515
–1533
.10.1002/num.219574.
Menezes
,
S. B.
, 2006
, “
Remarks on Weak Solutions for a Nonlocal Parabolic Problem
,” Int. J. Math. Math. Sci.
,
2006
, pp. 1
–10
.10.1155/IJMMS/2006/826545.
Zheng
,
S.
, and
Chipot
,
M.
, 2005
, “
Asymptotic Behaviour of Solutions to Nonlinear Parabolic Equations With Nonlocal Terms
,” Asymptot. Anal.
,
45
(3
), pp. 35
–40
.10.5167/uzh-217516.
Diethelm
,
K.
, 2010
, “
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,” Lecture Notes in Mathematics
, Vol. 2004,
Springer
,
Berlin, Germany
.7.
Chaudhary
,
S.
, and
Kundaliya
,
P. J.
, 2022
, “
L1 Scheme on Graded Mesh for Subdiffusion Equation With Nonlocal Diffusion Term
,” Math. Comput. Simul.
,
195
, pp. 119
–137
.10.1016/j.matcom.2022.01.0068.
Kundaliya
,
P. J.
, and
Chaudhary
,
S.
, 2023
, “
Symmetric Fractional Order Reduction Method With L1 Scheme on Graded Mesh for Time Fractional Nonlocal Diffusion-Wave Equation of Kirchhof Type
,” Comput. Math. Appl.
,
149
, pp. 128
–134
.10.1016/j.camwa.2023.08.0319.
Xie
,
Y.
,
Yin
,
D.
, and
Mei
,
L.
, 2022
, “
Finite Difference Scheme on Graded Meshes to the Time-Fractional Neutron Diffusion Equation With Non-Smooth Solutions
,” Appl. Math. Comput.
,
435
, p. 127474
.10.1016/j.amc.2022.12747410.
Ghosh
,
B.
, and
Mohapatra
,
J.
, 2023
, “
A Novel Numerical Technique for Solving Time Fractional Nonlinear Diffusion Equations Involving Weak Singularities
,” Math. Meth. Appl. Sci.
,
46
(12
), pp. 12811
–12825
.10.1002/mma.921411.
Kedia
,
N.
,
Alikhanov
,
A.
, and
Singh
,
V.
, 2022
, “
Stable Numerical Schemes for Time-Fractional Diffusion Equation With Generalized Memory Kernel
,” Appl. Numer. Math.
,
172
, pp. 546
–565
.10.1016/j.apnum.2021.11.00612.
Kumari
,
S.
, and
Pandey
,
R.
, 2023
, “
Single-Term and Multi-Term Nonuniform Time-Stepping Approximation Methods for Two-Dimensional Time-Fractional Diffusion-Wave Equation
,” Comput. Math. Appl.
,
151
, pp. 359
–383
.10.1016/j.camwa.2023.10.00813.
Mustapha
,
K.
, and
McLean
,
W.
, 2007
, “
A Second-Order Accurate Numerical Method for a Fractional Wave Equation
,” Numer. Math.
,
105
(3
), pp. 481
–510
.10.1007/s00211-006-0045-y14.
Stynes
,
M.
,
O'Riordan
,
E.
, and
Gracia
,
J. L.
, 2017
, “
Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
,” SIAM J. Numer. Anal.
,
55
(2
), pp. 1057
–1079
.10.1137/16M108232915.
Sakamoto
,
K.
, and
Yamamoto
,
M.
, 2011
, “
Initial Value/Boundary Value Problems for Fractional Diffusion-Wave Equations and Applications to Some Inverse Problems
,” J. Math. Anal. Appl.
,
382
(1
), pp. 426
–447
.10.1016/j.jmaa.2011.04.05816.
Jin
,
B.
,
Li
,
B.
, and
Zhou
,
Z.
, 2018
, “
Numerical Analysis of Nonlinear Subdiffusion Equations
,” SIAM J. Numer. Anal.
,
56
(1
), pp. 1
–23
.10.1137/16M108932017.
Li
,
D.
,
Qin
,
H.
, and
Zhang
,
J.
, 2021
, “
Sharp Pointwise-in-Time Error Estimate of L1 Scheme for Nonlinear Subdiffusion Equations
,” e-print arXiv:2101.04554v1
.10.48550/arXiv.2101.0455418.
Huang
,
C.
, and
Stynes
,
M.
, 2021
, “
α-Robust Error Analysis of a Mixed Finite Element Method for a Time-Fractional Biharmonic Equation
,” Numer. Algor.
,
87
(4
), pp. 1749
–1766
.10.1007/s11075-020-01036-y19.
Kopteva
,
N.
, 2019
, “
Error Analysis of the L1 Method on Graded and Uniform Meshes for a Fractional Derivative Problem in Two and Three Dimensions
,” Math. Comp.
,
8
, pp. 2135
–2155
.10.1090/mcom/341020.
Manimaran
,
J.
, and
Shangerganesh
,
L.
, 2020
, “
Error Estimates for Galerkin Finite Element Approximations of Time-Fractional Nonlocal Diffusion Equation
,” Int. J. Comput. Math.
,
98
(7
), pp. 1365
–1384
.10.1080/00207160.2020.182049221.
Alikhanov
,
A.
, 2015
, “
A New Difference Scheme for the Time Fractional Diffusion Equation
,” J. Comput. Phys.
,
280
, pp. 424
–438
.10.1016/j.jcp.2014.09.03122.
Huang
,
C.
, and
Stynes
,
M.
, 2020
, “
Optimal Spatial H1-Norm Analysis of a Finite Element Method for a Time-Fractional Diffusion Equation
,” J. Comput. Appl. Math
,
367
, p. 112435
.10.1016/j.cam.2019.11243523.
Huang
,
C.
, and
Stynes
,
M.
, 2022
, “
A Sharp α-Robust
Error Bound for a Time-Fractional Allen-Cahn Problem Discretised by the Alikhanov
-
Scheme and a Standard FEM
,” J. Sci. Comput.
,
91
, p. 4310.1007/s10915-022-01810-1.24.
Chen
,
H.
, and
Stynes
,
M.
, 2019
, “
Error Analysis of a Second-Order Method on Fitted Meshes for a Time Fractional Diffusion Problem
,” J. Sci. Comput.
,
79
(1
), pp. 624
–647
.10.1007/s10915-018-0863-y25.
Liao
,
H.
,
McLean
,
W.
, and
Zhang
,
J.
, 2021
, “
A Second-Order Scheme With Nonuniform Time Steps for a Linear Reaction-Subdiffusion Equation
,” Commun. Comput. Phys.
,
30
(2
), pp. 567
–601
.10.4208/cicp.OA-2020-012426.
Chen
,
H.
, and
Stynes
,
M.
, 2021
, “
Blow-Up of Error Estimates in Time-Fractional Initial-Boundary Value Problems
,” IMA J. Numer. Anal.
,
41
(2
), pp. 974
–997
.10.1093/imanum/draa01527.
Chen
,
H.
,
Wang
,
Y.
, and
Fu
,
H.
, 2022
, “
α-Robust
-Norm Error Estimate of Nonuniform Alikhanov Scheme for Fractional Sub-Diffusion Equation
,” Appl. Math. Lett.
,
125
, p. 107771
.10.1016/j.aml.2021.10777128.
Gudi
,
T.
, 2012
, “
Finite Element Method for a Nonlocal Problem of Kirchhoff Type
,” SIAM J. Numer. Anal.
,
50
(2
), pp. 657
–668
.10.1137/11082293129.
Chaudhary
,
S.
,
Srivastava
,
V.
,
Kumar
,
V. V. K. S.
, and
Srinivasan
,
B.
, 2017
, “
Finite Element Approximation of Nonlocal Parabolic Problem
,” Numer. Methods Partial Differ. Eq.
,
33
(3
), pp. 786
–813
.10.1002/num.2212330.
Thomée
,
V.
, 2006
, Galerkin Finite Element Methods for Parabolic Problems
,
2
nd revised and expanded ed.,
Springer
,
Berlin, Germany
.31.
Liao
,
H.
,
Mclean
,
W.
, and
Zhang
,
J.
, 2019
, “
A Discrete Grönwall Inequality With Applications to Numerical Schemes for Sub-Diffusion Problems
,” SIAM J. Numer. Anal.
,
57
(1
), pp. 218
–237
.10.1137/16M1175742Copyright © 2024 by ASME
You do not currently have access to this content.