Abstract

In this paper, we developed an efficient Adams-type predictor–corrector (PC) approach for the numerical solution of fractional differential equations (FDEs) with a power law kernel. The main idea of the proposed approach is to use a linear approximation to the nonlinear problem and then implement finite difference approximations of derivatives. Numerical comparisons with the fractional Adams method are made and simulation results are demonstrated to evaluate the approximation error of the proposed approach. The efficiency of this approach has been depicted by presenting numerical solutions of some test fractional calculus models. Numerical simulation of a fractional Lotka–Volterra model is provided, as a case study, using the proposed approach. The advantage of the proposed approach lies in its flexibility in providing approximate numerical solutions with high accuracy.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
3.
Samko
,
G.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Amsterdam, The Netherlands
.
4.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific Publishing Company
,
Singapore
.
5.
Kilbas
,
A.
,
Srivastava
,
H.
, and
Trujillo
,
J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
, Amsterdam,
The Netherlands
.
6.
Odibat
,
Z.
,
2024
, “
On a Fractional Derivative Operator With a Singular Kernel: Definition, Properties and Numerical Simulation
,”
Phys. Scr.
,
99
(
7
), p.
075278
.10.1088/1402-4896/ad588c
7.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,”
Therm. Sci.
,
20
(
2
), pp.
763
769
.10.2298/TSCI160111018A
8.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
(
2
), pp.
73
85
.https://www.naturalspublishing.com/files/published/0gb83k287mo759.pdf
9.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2023
, “
A New Fractional Derivative Operator With Generalized Cardinal Sine Kernel: Numerical Simulation
,”
Math. Comput. Simul.
,
212
, pp.
224
233
.10.1016/j.matcom.2023.04.033
10.
Odibat
,
Z.
,
2024
, “
A New Fractional Derivative Operator With a Generalized Exponential Kernel
,”
Nonlinear Dyn.
,
112
(
17
), pp.
15219
15230
.10.1007/s11071-024-09798-z
11.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2002
, “
Analysis of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
265
(
2
), pp.
229
248
.10.1006/jmaa.2000.7194
12.
Tadjeran
,
C.
, and
Meerschaert
,
M. M.
,
2007
, “
A Second-Order Accurate Numerical Method for the Two-Dimensional Fractional Diffusion Equation
,”
J. Comput. Phys.
,
220
(
2
), pp.
813
823
.10.1016/j.jcp.2006.05.030
13.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2016
, “
Numerical Solution of Distributed Order Fractional Differential Equations by Hybrid Functions
,”
J. Comput. Phys.
,
315
, pp.
169
181
.10.1016/j.jcp.2016.01.041
14.
Mendes
,
E. M. A.
,
Salgado
,
G. H. O.
, and
Aguirre
,
L. A.
,
2019
, “
Numerical Solution of Caputo Fractional Differential Equations With Infinity Memory Effect at Initial Condition
,”
Commun. Nonlinear Sci. Numer. Simul.
,
69
, pp.
237
247
.10.1016/j.cnsns.2018.09.022
15.
Yuttanan
,
B.
, and
Razzaghi
,
M.
,
2019
, “
Legendre Wavelets Approach for Numerical Solutions of Distributed Order Fractional Differential Equations
,”
Appl. Math. Model.
,
70
, pp.
350
364
.10.1016/j.apm.2019.01.013
16.
Moghaddam
,
B. P.
,
Machado
,
J. A.
, and
Morgado
,
M. L.
,
2019
, “
Numerical Approach for a Class of Distributed Order Time Fractional Partial Differential Equations
,”
Appl. Numer. Math.
,
136
, pp.
152
162
.10.1016/j.apnum.2018.09.019
17.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2020
, “
Numerical Simulation of Initial Value Problems With Generalized Caputo-Type Fractional Derivatives
,”
Appl. Numer. Math.
,
156
, pp.
94
105
.10.1016/j.apnum.2020.04.015
18.
Fang
,
Z. W.
,
Sun
,
H. W.
, and
Wang
,
H.
,
2020
, “
A Fast Method for Variable-Order Caputo Fractional Derivative With Applications to Time-Fractional Diffusion Equations
,”
Comput. Math. Appl.
,
80
(
5
), pp.
1443
1458
.10.1016/j.camwa.2020.07.009
19.
Ali
,
U.
,
Iqbal
,
A.
,
Sohail
,
M.
,
Abdullah
,
F.
, and
Khan
,
Z.
,
2022
, “
Compact Implicit Difference Approximation for Time-Fractional Diffusion-Wave Equation
,”
Alexandria Eng. J.
,
61
(
5
), pp.
4119
4126
.10.1016/j.aej.2021.09.005
20.
Zerari
,
A.
,
Odibat
,
Z.
, and
Shawagfeh
,
N.
,
2023
, “
On the Formulation of a Predictor-Corrector Method to Model IVPs With Variable-Order Liouville-Caputo-Type Derivatives
,”
Math. Methods Appl. Sci.
,
46
(
18
), pp.
19100
19114
.10.1002/mma.9613
21.
Das
,
N.
, and
Saha Ray
,
S.
,
2022
, “
Novel Optical Soliton Solutions for Time-Fractional Resonant Nonlinear Schrödinger Equation in Optical Fiber
,”
Opt. Quantum Electron.
,
54
(
2
), p.
112
.10.1007/s11082-021-03479-6
22.
Lassong
,
B. S.
,
Dasumani
,
M.
,
Mung'atu
,
J. K.
, and
Moore
,
S. E.
,
2024
, “
Power and Mittag-Leffler Laws for Examining the Dynamics of Fractional Unemployment Model: A Comparative Analysis
,”
Chaos, Solitons Fractals: X
,
13
, p.
100117
.10.1016/j.csfx.2024.100117
23.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
3
22
.10.1023/A:1016592219341
24.
Diethelm
,
K.
,
Ford
,
N. J.
,
Freed
,
A.
, and
Luchko
,
A.
,
2005
, “
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
6–8
), pp.
743
773
.10.1016/j.cma.2004.06.006
25.
Deng
,
W.
,
2007
, “
Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
206
(
1
), pp.
174
188
.10.1016/j.cam.2006.06.008
26.
Garrappa
,
R.
,
2009
, “
On Some Explicit Adams Multistep Methods for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
229
(
2
), pp.
392
399
.10.1016/j.cam.2008.04.004
27.
Li
,
C.
,
Chen
,
A.
, and
Ye
,
J.
,
2011
, “
Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation
,”
J. Comput. Phys.
,
230
(
9
), pp.
3352
3368
.10.1016/j.jcp.2011.01.030
28.
Daftardar-Gejji
,
V.
,
Sukale
,
Y.
, and
Bhalekar
,
S.
,
2014
, “
A New Predictor-Corrector Method for Fractional Differential Equations
,”
Appl. Math. Comput.
,
244
, pp.
158
182
.10.1016/j.amc.2014.06.097
29.
Liu
,
Y.
,
Roberts
,
J.
, and
Yan
,
Y.
,
2018
, “
A Note on Finite Difference Methods for Nonlinear Fractional Differential Equations With Non-Uniform Meshes
,”
Int. J. Comput. Math.
,
95
(
6–7
), pp.
1151
1169
.10.1080/00207160.2017.1381691
30.
Odibat
,
Z.
, and
Shawagfeh
,
N.
,
2020
, “
An Optimized Linearization-Based Predictor-Corrector Algorithm for the Numerical Simulation of Nonlinear FDEs
,”
Phys. Scr.
,
95
(
6
), p.
065202
.10.1088/1402-4896/ab7b8a
31.
Odibat
,
Z.
,
2021
, “
A Universal Predictor-Corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations
,”
Nonlinear Dyn.
,
105
(
3
), pp.
2363
2374
.10.1007/s11071-021-06670-2
32.
Hajaj
,
H.
, and
Odibat
,
Z.
,
2023
, “
Numerical Solutions of Fractional Epidemic Models With Generalized Caputo-Type Derivatives
,”
Phys. Scr.
,
98
(
4
), p.
045206
.10.1088/1402-4896/acbfef
33.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2021
, “
On a New Modification of the Erdélyi-Kober Fractional Derivative
,”
Fractal Fract.
,
5
(
3
), p.
121
.10.3390/fractalfract5030121
34.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2023
, “
New Solutions of the Fractional Differential Equations With Modified Mittag-Leffler Kernel
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
9
), p.
091007
.10.1115/1.4062747
35.
Odibat
,
Z.
,
2024
, “
Numerical Solutions of Linear Time-Fractional Advection-Diffusion Equations With Modified Mittag-Leffler Operator in a Bounded Domain
,”
Phys. Scr.
,
99
(
1
), p.
015205
.10.1088/1402-4896/ad0fd0
36.
Lee
,
S.
,
Lee
,
J.
,
Kim
,
H.
, and
Jang
,
B.
,
2021
, “
A Fast and High-Order Numerical Method for Nonlinear Fractional-Order Differential Equations With Non-Singular Kernel
,”
Appl. Numer. Math.
,
163
, pp.
57
76
.10.1016/j.apnum.2021.01.013
37.
Odibat
,
Z.
,
2024
, “
Numerical Simulation for an Initial-Boundary Value Problem of Time-Fractional Klein-Gordon Equations
,”
Appl. Numer. Math.
,
206
, pp.
1
11
.10.1016/j.apnum.2024.07.015
38.
Odibat
,
Z.
,
2025
, “
Numerical Discretization of Initial-Boundary Value Problems for PDEs With Integer and Fractional Order Time Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
140
, p.
108331
.10.1016/j.cnsns.2024.108331
39.
Chen
,
Y.
,
Liu
,
F.
,
Yu
,
Q.
, and
Li
,
T.
,
2021
, “
Review of Fractional Epidemic Models
,”
Appl. Math. Model.
,
97
, pp.
281
307
.10.1016/j.apm.2021.03.044
40.
Jan
,
R.
,
Boulaaras
,
S.
,
Alyobi
,
S.
,
Rajagopal
,
K.
, and
Jawad
,
M.
,
2023
, “
Fractional Dynamics of the Transmission Phenomena of Dengue Infection With Vaccination
,”
Discrete Contin. Dyn. Syst.-S
,
16
(
8
), pp.
2096
2117
.10.3934/dcdss.2022154
41.
Boulaaras
,
S.
,
Jan
,
R.
,
Khan
,
A.
,
Allahem
,
A.
,
Ahmad
,
I.
, and
Bahramand
,
S.
,
2024
, “
Modeling the Dynamical Behavior of the Interaction of T-Cells and Human Immunodeficiency Virus With Saturated Incidence
,”
Commun. Theor. Phys.
,
76
(
3
), p.
035001
.10.1088/1572-9494/ad2368
42.
Jan
,
R.
,
Hinçal
,
E.
,
Hosseini
,
K.
,
Abdul Razak
,
N. N.
,
Abdeljawad
,
T.
, and
Osman
,
M. S.
,
2024
, “
Fractional View Analysis of the Impact of Vaccination on the Dynamics of a Viral Infection
,”
Alexandria Eng. J.
,
102
, pp.
36
48
.10.1016/j.aej.2024.05.080
43.
Das
,
S.
, and
Gupta
,
P. K.
,
2011
, “
A Mathematical Model on Fractional Lotka-Volterra Equations
,”
J. Theor. Biol.
,
277
(
1
), pp.
1
6
.10.1016/j.jtbi.2011.01.034
44.
Ravi Kanth
,
A. S.
, and
Devi
,
S.
,
2021
, “
A Practical Numerical Approach to Solve a Fractional Lotka-Volterra Population Model With Non-Singular and Singular Kernels
,”
Chaos, Solitons Fractals
,
145
, p.
110792
.10.1016/j.chaos.2021.110792
45.
He
,
J.
,
Zheng
,
H.
, and
Ye
,
Z.
,
2024
, “
A New Numerical Approach Method to Solve the Lotka-Volterra Predator-Prey Models With Discrete Delays
,”
Phys. A
,
635
, p.
129524
.10.1016/j.physa.2024.129524
You do not currently have access to this content.